
Last updated March 1, 2016. For contact information, test tools, and updates, visit https://drownattack.com.

DROWN: Breaking TLS using SSLv2

Nimrod Aviram1, Sebastian Schinzel2, Juraj Somorovsky3, Nadia Heninger4, Maik Dankel2,
Jens Steube5, Luke Valenta4, David Adrian6, J. Alex Halderman6, Viktor Dukhovni7,
Emilia Käsper8, Shaanan Cohney4, Susanne Engels3, Christof Paar3 and Yuval Shavitt1

1Department of Electrical Engineering, Tel Aviv University
2Münster University of Applied Sciences

3Horst Görtz Institute for IT security, Ruhr University Bochum
4University of Pennsylvania

5Hashcat Project
6University of Michigan
7Two Sigma/OpenSSL

8Google/OpenSSL

Abstract
We present DROWN, a novel cross-protocol attack that
can decrypt passively collected TLS sessions from up-
to-date clients by using a server supporting SSLv2 as a
Bleichenbacher RSA padding oracle. We present two ver-
sions of the attack. The more general form exploits a com-
bination of thus-far unnoticed protocol flaws in SSLv2
to develop a new and stronger variant of the Bleichen-
bacher attack. A typical scenario requires the attacker
to observe 1,000 TLS handshakes, then initiate 40,000
SSLv2 connections and perform 250 offline work to de-
crypt a 2048-bit RSA TLS ciphertext. (The victim client
never initiates SSLv2 connections.) We implemented the
attack and can decrypt a TLS 1.2 handshake using 2048-
bit RSA in under 8 hours using Amazon EC2, at a cost
of $440. Using Internet-wide scans, we find that 33% of
all HTTPS servers and 22% of those with browser-trusted
certificates are vulnerable to this protocol-level attack,
due to widespread key and certificate reuse.

For an even cheaper attack, we apply our new tech-
niques together with a newly discovered vulnerability in
OpenSSL that was present in releases from 1998 to early
2015. Given an unpatched SSLv2 server to use as an
oracle, we can decrypt a TLS ciphertext in one minute on
a single CPU—fast enough to enable man-in-the-middle
attacks against modern browsers. 26% of HTTPS servers
are vulnerable to this attack.

We further observe that the QUIC protocol is vulner-
able to a variant of our attack that allows an attacker to
impersonate a server indefinitely after performing as few
as 225 SSLv2 connections and 265 offline work.

We conclude that SSLv2 is not only weak, but actively
harmful to the TLS ecosystem.

1 Introduction
TLS [14] is one of the main protocols responsible for
transport security on the modern Internet. TLS and its
precursor SSLv3 have been the target of a large number
of cryptographic attacks in the research community, both
on popular implementations and the protocol itself [35].
Prominent recent examples include attacks on outdated
or deliberately weakened encryption in RC4 [3], RSA [6],
and Diffie-Hellman [1], different side channels includ-
ing Lucky13 [2], BEAST [15], and POODLE [37], and
several attacks on invalid TLS protocol flows [6, 13, 7].

Comparatively little attention has been paid to the
SSLv2 protocol, likely because the known attacks are
so devastating and the protocol has long been considered
obsolete. Wagner and Schneier wrote in 1996 that their at-
tacks on SSLv2 “will be irrelevant in the long term when
servers stop accepting SSL 2.0 connections” [46]. Most
modern TLS clients do not support SSLv2 at all. However,
in Internet-wide scans we found that out of 36 million
HTTPS servers, 6 million (17%) support SSLv2.

Bleichenbacher’s padding oracle attack [9] is an adap-
tive chosen ciphertext attack against RSA PKCS#1 v1.5,
the RSA padding standard used in TLS. This attack en-
ables decryption of RSA-encrypted ciphertexts if a server
distinguishes between correctly and incorrectly padded
RSA plaintexts, and was termed the “million-message
attack” upon its introduction in 1998 after the number of
RSA decryption queries needed to deduce a plaintext. All
widely-used modern SSL/TLS server implementations
include countermeasures against Bleichenbacher attacks.

A Bleichenbacher attack on SSLv2. Our first result
shows that the SSLv2 protocol is fatally vulnerable to

https://drownattack.com

a form of Bleichenbacher attack that enables decryption
of RSA ciphertexts. We develop a novel application of the
attack that allows us to use a server that supports SSLv2 as
an efficient padding oracle. This attack is a protocol-level
flaw in SSLv2 that results in a feasible attack for 40-bit
export cipher strengths, and in fact abuses the universally
implemented countermeasures against Bleichenbacher at-
tacks to obtain a decryption oracle.

We also discovered multiple implementation flaws in
commonly deployed OpenSSL versions that allow an ex-
tremely efficient and much more dangerous instantiation
of this attack.

Using SSLv2 to break TLS. Second, we present a novel
cross-protocol attack that allows an attacker to break a
passively collected RSA key exchange for any TLS server
if the RSA keys are also used for SSLv2, possibly on a dif-
ferent server. We named our attack DROWN (Decrypting
RSA using Obsolete and Weakened eNcryption).

In its general version, the attack exploits the protocol
flaws in SSLv2, does not rely on any particular library
implementation, and is feasible to carry out in practice
for commonly supported export-grade ciphers. In order to
decrypt one TLS session, the attacker must passively cap-
ture about 1,000 TLS sessions using RSA key exchange,
make 40,000 SSLv2 connections to the victim server and
perform 250 symmetric encryption operations. We suc-
cessfully carried out this attack using a heavily optimized
GPU implementation and were able to decrypt a 2048-bit
RSA ciphertext in less than 18 hours on a GPU cluster
and less than 8 hours using the Amazon EC2 service.

We found that 11.5 million (33%) HTTPS servers are
vulnerable to our attacks, because many HTTPS servers
that do not directly offer SSLv2 share RSA keys with
other services that do. Of servers offering HTTPS with
browser-trusted certificates, 22% are vulnerable.

Our special version of the DROWN attack, which ex-
ploits a flaw in OpenSSL for a more efficient oracle, re-
quires roughly the same number of captured TLS sessions,
half as many connections to the victim server, and no large
computations. The resulting attack can be completed on a
single core on commodity hardware in less than a minute,
without GPUs or distributed computing, and is limited
primarily by how fast the server can complete handshakes.
It is fast enough to perform man-in-the-middle attacks on
live TLS sessions before the handshake times out, even
allowing the attacker to target connections to servers that
prefer non-RSA cipher suites and downgrade a modern
TLS client to RSA key exchange. Our Internet-wide scans
suggest that 79% of HTTPS servers that are vulnerable
to the general attack, namely 26% of all HTTPS servers,
are also vulnerable to real-time attacks exploiting this
dangerous implementation flaw.

Our results highlight the risk that continued support
for SSLv2 imposes on the security of much more recent

TLS versions. This is an instance of a more general
phenomenon of insufficient domain separation, where
older, vulnerable security standards can open the door to
attacks on newer versions. We conclude that phasing out
outdated and insecure standards should become a priority
for standards designers and practitioners.

Responsible disclosure. The DROWN attack was as-
signed CVE-2016-0800. We disclosed our attacks to
OpenSSL and worked with them to coordinate disclosure.
The specific OpenSSL vulnerabilities we discovered have
been assigned CVE-2015-3197 and CVE-2016-0703. In
response to our disclosure, OpenSSL has made it im-
possible to configure a TLS server in such a way that
it is vulnerable to DROWN. Microsoft had already dis-
abled SSLv2 for all supported versions of IIS. We also
disclosed the attack to the NSS developers, who have
disabled SSLv2 on the last NSS tool that supported it,
and have hastened their efforts to entirely remove sup-
port for the protocol from the NSS codebase. In response
to our disclosure, Google will disable QUIC support for
non-whitelisted servers, and make changes to the QUIC
standard, as detailed in Section 7. We also notified IBM,
Cisco, Amazon, the German CERT-Bund, and the Israeli
CERT.

2 Background
In the following, a||b denotes concatenation of strings a
and b. a[i] references the i-th byte in a. (N,e) denotes
an RSA public key, where N has byte-length ` (|N|= `)
and e is the public exponent. The corresponding secret
exponent is d = 1/e mod φ(N).

2.1 PKCS#1 v1.5 encryption padding
Our attacks rely on the structure of RSA PKCS#1 v1.5
padding. Although there are newer versions of the PKCS
standard, for example RSA PKCS#1 v2.0 which imple-
ments OAEP, SSL/TLS uses PKCS#1 v1.5. The basic task
of the PKCS#1 v1.5 encryption padding scheme [27] is to
randomize encryptions by prepending a random padding
string PS to a message k (typically a symmetric session
key) before applying RSA encryption:

1. The plaintext message is k. The encrypter generates
a random byte string PS, where |PS| ≥ 8, |PS| =
`−3−|k|, and 0x00 6∈ {PS[1], . . . ,PS[|PS|]}.

2. The encryption block is m = 00||02||PS||00||k.

3. The ciphertext is computed as c = me mod N.

To decrypt such a ciphertext, the decrypter first com-
putes m = cd mod N. Then it checks whether the de-
crypted message m is correctly formatted as a PKCS#1
v1.5-encoded message. We say that the ciphertext c
and the decrypted message bytes m[1]||m[2]||...||m[`] are

2

PKCS#1 v1.5 conformant if:

m[1]||m[2] = 0x00||0x02
0x00 6∈ {m[3], . . . ,m[10]}

If this condition holds, the decrypter searches for the first
value i > 10 such that m[i] = 0x00. Then, it extracts k =
m[i+1]|| . . . ||m[`]. Otherwise, the ciphertext is rejected.

In SSLv3 and TLS, RSA PKCS#1 v1.5 is used to en-
capsulate the premaster secret exchanged during the hand-
shake [14]. Thus, k is interpreted as the premaster secret.
In SSLv2, RSA PKCS#1 v1.5 is used for encapsulation
of an equivalent key denoted the master_key.

2.2 SSL and TLS
The first incarnation of the TLS protocol was the SSL
(Secure Socket Layer) protocol, which was designed by
Netscape in the 90s. The first two versions of SSL were
immediately found to be vulnerable to trivial attacks [45,
46] which were fixed in SSLv3 [19]. Later versions of the
standard were renamed TLS, and share a similar structure
to SSLv3. The current version of the protocol is TLS 1.2;
TLS 1.3 is currently under development.

An SSL/TLS protocol flow consists of two phases:
handshake and application data exchange. In the first
phase, the communicating parties agree on cryptographic
algorithms and establish shared keys. In the second phase,
these keys are used to protect the confidentiality and au-
thenticity of the transmitted application data.

The handshake protocol was fundamentally redesigned
in the SSLv3 version. This new handshake protocol was
then used in later TLS versions up to TLS 1.2. In the fol-
lowing, we describe the RSA-based handshake protocols
used in TLS and SSLv2, and highlight their differences.

The SSLv2 handshake protocol. The SSLv2 protocol
description [22] is much less formally specified than
modern RFCs. Figure 1 depicts an SSLv2 handshake.
A client initiates an SSLv2 handshake by sending a
ClientHello message, which includes a list of cipher
suites csc supported by the client and a client nonce
rc, termed challenge. The server responds with a
ServerHello message, which contains a list of cipher
suites css supported by the server, the server certificate,
and a server nonce rs, termed connection_ID.

The client responds with a ClientMasterKey mes-
sage, which specifies a cipher suite supported by both
peers and key data used for constructing a master_key.
In order to support export cipher suites with 40-bit se-
curity (e.g., SSL_RC2_128_CBC_EXPORT40_WITH_MD5),
the key data is divided into two parts:

• mkclear: A portion of the master_key sent in the
ClientMasterKey message as plaintext (termed
clear_key_data in the SSLv2 standard).

• mksecret : A secret portion of the master_key,

SSLv2
Client

SSLv2
Client

SSLv2
Server
SSLv2
Server

ClientHello:
cs

C
, r

C

ClientMasterKey: cs,
mk

clear
, enc

pk
(mk

secret
)

(Client-) Finished

ServerVerify

(Server-) Finished

master_key = mk
clear

 || mk
secret

ServerHello:
cert, cs

S
, r

S

Figure 1: SSLv2 handshake. The server responds with a
ServerVerify message directly after receiving an RSA-
PKCS#1 v1.5 ciphertext contained in ClientMasterKey.
This protocol feature enables our attack.

encrypted with RSA PKCS#1 v1.5 (termed
secret_key_data).

The resulting master_key mk is constructed by concate-
nating these two keys: mk = mkclear||mksecret . For 40-bit
export cipher suites, mksecret is five bytes in length. For
non-export cipher suites, the whole master_key is en-
crypted, and the length of mkclear is zero.

The client and server can then compute session keys
from the reconstructed master_key mk:

server_write_key= MD5(mk||“0”||rc||rs)
client_write_key= MD5(mk||“1”||rc||rs)

The server responds with a ServerVerify mes-
sage consisting of the challenge rc encrypted with
the server_write_key. Both peers then exchange
Finished messages in order to authenticate to each other.

Our attack exploits the fact the server always de-
crypts an RSA-PKCS#1 v1.5 ciphertext, computes the
server_write_key, and immediately responds with a
ServerVerify message. The SSLv2 standard implies
this message ordering, but does not make it explicit. How-
ever, we observed this behavior in every implementation
we examined. Our attack also takes advantage of the fact
that the encrypted mksecret portion of the master_key can
vary in length, and is only five bytes for export ciphers.

The TLS handshake protocol. In TLS [14] or SSLv3,
the client initiates the handshake with a ClientHello,
which contains a client random rc and a list of supported
cipher suites. The server chooses one of the cipher
suites and responds with three messages, ServerHello,
Certificate, and ServerHelloDone. These messages
include the server’s choice of cipher suite, server nonce rs,

3

and a server certificate with an RSA public key. The client
then uses the public key to encrypt a newly generated 48-
byte premaster secret pms and sends it to the server in
a ClientKeyExchange message. The client and server
then derive encryption and MAC keys from the premaster
secret and the client and server random nonces. The de-
tails of this derivation are not important to our attack. The
client then sends ChangeCipherSpec and Finished
messages. The Finished message authenticates all pre-
vious handshake messages using the derived keys. The
server responds with its own ChangeCipherSpec and
Finished messages.

The two main details relevant to our attacks are:

• The premaster secret is always 48 bytes long, inde-
pendent of the chosen cipher suite. This is also true
for export cipher suites.

• After receiving the ClientKeyExchange message,
the server waits for the ClientFinished message,
in order to authenticate the client.

2.3 OpenSSL SSLv2 cipher suite selection bug
The SSLv2 protocol is supported in OpenSSL by default
in all versions under 1.1.0. OpenSSL removed SSLv2
cipher suites from the default cipher string in 2010 be-
tween versions 0.9.8n and 1.0.0; the changelog discusses
this as being equivalent to disabling support for SSLv2
by default [38]. Unfortunately, during our experiments
we discovered that OpenSSL servers do not respect the
cipher suites advertised in the ServerHello message.
That is, the client can select an arbitrary cipher suite in
the ClientMasterKey message and force the use of ex-
port cipher suites even if they are explicitly disabled in the
server configuration. The SSLv2 protocol itself was still
enabled by default in the OpenSSL standalone server for
the most recent OpenSSL versions prior to our disclosure.

We notified the OpenSSL team of this vulnerabil-
ity, which was assigned CVE ID CVE-2015-3197. We
have cooperated to develop a fix, which was included in
OpenSSL releases 1.0.2f and 1.0.1r [38].

2.4 Bleichenbacher’s attack
Bleichenbacher’s attack is a padding oracle attack—it
exploits the fact that RSA ciphertexts should decrypt to
plaintexts compliant with the PKCS#1 v1.5 padding for-
mat. If an implementation receives an RSA ciphertext that
decrypts to an invalid PKCS#1 v1.5 plaintext, it might
naturally leak this information via an error message, by
closing the connection, or by taking longer to process
the error condition. This behavior can leak information
about the plaintext that can be modeled as a cryptographic
oracle for the decryption process. Bleichenbacher [9]
demonstrated how such an oracle could be exploited to
decrypt RSA ciphertexts.

Algorithm. In the simplest attack scenario, the attacker
has a valid PKCS#1 v1.5 ciphertext c0 that he wishes to
decrypt to discover the message m0. He has no access to
the private RSA key, but instead has access to an oracle
O that will decrypt a ciphertext c and inform the attacker
whether the most significant two bytes match the required
value for a correct PKCS#1 v1.5 padding:

O(c) =

{
1 if m = cd mod N starts with 0x00 02
0 otherwise.

If the oracle answers with 1, the attacker knows that
2B ≤ m ≤ 3B− 1, where B = 28(`−2). The attacker can
take advantage of RSA malleability to generate new can-
didate ciphertexts for any s:

c = (c0 · se) mod N = (m0 · s)e mod N

The attacker queries the oracle with c. If the oracle re-
sponds with 0, the attacker increments s and repeats the
previous step. Otherwise, the attacker learns that for
some r, 2B≤ m0s− rN < 3B. This allows the attacker to
reduce the range of possible solutions to

2B+ rN
s

≤ m0 <
3B+ rN

s
The attacker proceeds by refining guesses for s and r
values and successively decreasing the size of the interval
containing m0. At some point the interval will contain a
single valid value, m0. Bleichenbacher’s original paper
describes this process in further detail [9].

Countermeasures. In order to protect against this at-
tack, the decrypter must not leak any information about
the PKCS#1 v1.5 validity of the ciphertext. Since the
ciphertext itself does not decrypt to a valid message, the
decrypter needs to generate a fake plaintext and continue
with the protocol using this decoy. The attacker should
not be able to distinguish the resulting computation from
a correctly decrypted ciphertext.

In the case of SSL/TLS, the server generates a random
premaster secret and finishes the handshake with this
random premaster secret if the decrypted ciphertext is
invalid. The client will not possess the session key to send
a valid ClientFinished message and the connection
will terminate.

3 Breaking TLS with SSLv2
In this section, we describe our cross-protocol DROWN
attack that uses an SSLv2 server as an oracle to efficiently
decrypt TLS connections. We first describe our tech-
niques using a generic SSLv2 oracle. In Section 4.1, we
show how a protocol flaw in SSLv2 can be used to con-
struct such an oracle, and describe our general DROWN
attack. In Section 5, we show how an implementation flaw
in common versions of OpenSSL leads to a very powerful
oracle, and describe our efficient special DROWN attack.

4

3.1 Attack scenario
We consider a server that accepts TLS connections from
clients. The connections are established using a secure,
state-of-the-art TLS version (1.0–1.2) and a TLS_RSA ci-
pher suite where the private key is not known to the at-
tacker.

Server RSA key exposed via SSLv2. The same RSA
public key as the TLS connections is also used for SSLv2.
For simplicity, our presentation will refer to the servers
accepting TLS and SSLv2 connections as the same entity.

The attacker’s position in the network. Our attacker
is able to passively eavesdrop on traffic between the client
and server and record RSA-based TLS traffic, but does
not perform any active man-in-the-middle interference.

The attacker can expect to decrypt one out of 1,000
intercepted TLS connections in our attack for typical pa-
rameters. This is a devastating threat in many scenarios.
For example, a decrypted TLS connection might reveal
a client’s HTTP cookie or plaintext password, and an at-
tacker would only need to successfully decrypt a single
ciphertext to compromise the client’s account.

In order to collect 1,000 TLS connections, the attacker
might simply wait patiently until sufficiently many con-
nections are recorded. If the attacker’s intended victim
is the server, rather than a specific client, observing this
many connections from many clients might take only a
short time for an attacker who is located at a company
firewall or who could perform a DNS spoofing or BGP
hijacking attack to redirect traffic transparently through
themselves. If the attacker’s intended victim is a par-
ticular client, this is still feasible in many cases. As an
example, the Mozilla Thunderbird email client will check
for new email messages every ten minutes by default. A
targeted user will make 1,000 connections after leaving
the application running for a week. A less patient attacker
could embed or inject malicious JavaScript on an other-
wise innocuous web site to cause the client to connect
repeatedly to the victim server in a short time frame, as
in the BEAST attack [15]. Normally such connections
would use TLS session resumption instead of completing
a fresh handshake on each time, but if an attacker can
trigger an error, the next connection will be negotiated
with a fresh handshake.

3.2 A generic SSLv2 oracle
Our attacks make use of a padding oracle that can be
queried on a ciphertext and leaks information about de-
crypted plaintext; this abstractly models the information
gained from an SSLv2 server’s behavior. Our SSLv2
oracles reveal many bytes of plaintext, resulting in an
efficient attack.

Our cryptographic oracle O has the following function-
ality: O decrypts an RSA ciphertext c and responds with

ciphertext validity based on the structure of the decrypted
message m. The ciphertext is valid only if m starts with
0x00 02 followed by non-null padding bytes, a delimiter
byte 0x00, and a master_key mksecret of correct byte
length k. In the following, we denote such a ciphertext to
be SSLv2 conformant.

All of the SSLv2 padding oracles we instantiate give
the attacker similar information about a PKCS#1 v1.5
conformant SSLv2 ciphertext:

O(c)=

{
mksecret if cd mod N = 00||02||PS||00||mksecret

0 otherwise.

That is, the oracle O(c) will return the decrypted mes-
sage mksecret if it is queried on a PKCS#1 v1.5 confor-
mant SSLv2 ciphertext c corresponding to a correctly
PKCS#1 v1.5 padded encryption of mksecret . The at-
tacker then learns k+3 bytes of information about m =
cd mod N: the first two bytes are 00||02, and the last
k + 1 bytes are 00||mksecret . The length k of mksecret
varies based on the cipher suite used in the instantia-
tion of the oracle. For export-grade cipher suites such as
SSL_RSA_EXPORT_WITH_RC2_CBC_40_MD5, k will be 5
bytes, so the attacker learns 8 bytes of information about
m. For SSL_DES_192_EDE3_CBC_WITH_MD5, k is 24
bytes and the attacker learns 27 bytes of plaintext.

3.3 DROWN attack template
Our attacker will use an SSLv2 oracle O to decrypt a
TLS ClientKeyExchange. The behavior of O poses
two problems for the attacker. First, a TLS ciphertext
transmitted in a TLS key exchange decrypts to a 48-byte
premaster secret. But since no SSLv2 cipher suites have
48-byte key strengths, this means that a valid TLS ci-
phertext is invalid to our oracle O . In order to apply
Bleichenbacher’s attack, the attacker needs to transform
the TLS ciphertext into a valid SSLv2 key exchange mes-
sage. Second, O is very restrictive, since it strictly checks
the length of the unpadded message. According to Bardou
et al. [5], using such an oracle for Bleichenbacher’s attack
would require 12 million oracle queries.1

Our attacker overcomes these problems by following
this generic attack flow:

0. The attacker collects many encrypted TLS RSA key
exchange messages.

1. He then attempts to convert the intercepted TLS ci-
phertexts containing a 48-byte premaster secret to
valid RSA PKCS#1 v1.5 encoded ciphertexts con-
taining messages of length appropriate to the SSLv2
oracle O . We accomplish this by taking advantage
of RSA ciphertext malleability and a technique of
Bardou et al. [5].

1See Table 1 in [5]. The oracle is denoted with the term FFF.

5

2. Once the attacker has obtained a valid SSLv2 RSA
ciphertext, he can continue with a modified version
of Bleichenbacher’s attack, and decrypt the message
after many more oracle queries.

3. The attacker can then transform the decrypted plain-
text back into the original plaintext, which is one of
the collected TLS handshakes.

We describe the algorithmic improvements we use to
make each of these steps efficient below.

3.3.1 Finding an SSLv2 conformant ciphertext
The first step for the attacker is to transform the original
TLS ClientKeyExchange message c0 from a TLS con-
formant ciphertext into an SSLv2 conformant ciphertext.
A trivial approach would be to generate multipliers si ∈
{s1,s2, . . .}, and compute ciphertexts ci = (c0si

e) mod N,
until one gets accepted by O . However, the number of
generated ciphertexts would be high, because O is very re-
strictive; for 2048-bit RSA keys and an oracle returning a
5-byte k the probability that a random ciphertext becomes
SSLv2 conformant is Prnd ≈ (1/256)3 ∗ (255/256)249 ≈
2−25.

Instead, we rely on the concept of trimmers, which
were introduced by Bardou et al. [5]. Assume that the
message m0 = c0

d mod N is divisible by a small num-
ber t. In that case, m0 · t−1 mod N simply equals the
natural number m0/t. If we choose u ≈ t, and multiply
the original message with a fraction u/t, the resulting
number will lie near the original message: m0 ≈ m0/t ·u.
We shall refer to such fractions as “small” fractions.

This method allows us to generate new SSLv2 confor-
mant messages with a much higher probability. Let c0 be
an intercepted TLS conformant RSA ciphertext, and let
m0 = cd

0 mod N be its corresponding plaintext. We select
a multiplier s = u/t mod N = ut−1 mod N where u and
t are coprime, compute the value c1 = c0se mod N, and
query O(c1). We will receive a response if m1 = m0 ·u/t
is SSLv2 conformant.

As an example, let us assume a 2048-bit RSA cipher-
text with k = 5, and consider the fraction u = 7, t = 8.
The probability that a random ciphertext c0 will be SSLv2
conformant is 1/7,774, so we expect to make 7,774 ora-
cle queries before discovering a ciphertext c0 for which
c0u/t is SSLv2 conformant, much better than a randomly
selected multiplier. Appendix B.1 gives more details on
computing these probabilities.

3.3.2 Shifting known plaintext bytes
Once we have obtained an SSLv2 conformant ciphertext
c1, we have also learned from our oracle information
about the k+ 1 least significant bytes (mksecret together
with the delimiter byte 0x00) and two most significant
0x00 02 bytes of the SSLv2 conformant message m1. We
would like to rotate these known bits around to the right,

so that we have a large block of contiguous known most
significant bytes of plaintext. In this section, we show that
this can be accomplished by multiplying by some shift
2−r mod N. In other words, given an SSLv2 conformant
ciphertext c1 = me

1 mod N, we can efficiently generate
an SSLv2 conformant ciphertext c2 = me

2 mod N where
m2 = s ·m1 ·2−r mod N and we know several most signif-
icant bytes of m2.

Let R = 28(k+1) and B = 28(`−2). Abusing notation
slightly, let the integer m1 = 2 ·B+PS ·R+k be the plain-
text satisfying me

1 = c1 mod N. At this stage, the k-byte
integer mksecret is known and the `− k− 3-byte integer
PS is not.

Let m̃1 = 2 ·B+ k be the known components of m1,
so m1 = m̃1 +PS ·R. We can use this to compute a new
plaintext for which we know many most significant bytes.
Consider the value

m1 ·R−1 mod N = m̃1 ·R−1 +PS mod N.

The value of PS is unknown, but we know that it consists
of `− k− 3 bytes. This means that the known value
m̃1 ·R−1 shares most of its k+ 3 most significant bytes
with m1 ·R−1.

Furthermore, we can iterate this process by finding
a new multiplier s such that m2 = s ·m1 ·R−1 mod N is
also SSLv2 conformant. A randomly chosen s < 230 will
work with probability 2−25.4. We can take advantage of
the bytes we have already learned about m1 to efficiently
compute such an s with only 678 oracle queries in expec-
tation for a 2048-bit RSA modulus. Appendix B.3 gives
more details.

3.3.3 Adapted Bleichenbacher iteration
It is feasible for all of our oracles to use the previous tech-
nique to entirely recover a plaintext message. However,
for our SSLv2 protocol oracle it is cheaper to continue
using Bleichenbacher’s original attack, once we have used
the above techniques to obtain a SSLv2 conformant mes-
sage m3 and an integer s3 such that m3 ·s3 is SSLv2 confor-
mant. At this point, we can apply the original algorithm
proposed by Bleichenbacher as described in Section 2.4,
with minimal modifications.

Each step obtains a message that starts with the required
0x00 02 bytes after two queries in expectation. Since we
know the value of the k+ 1 least significant bytes after
multiplying by any integer, we can query the oracle only
on multipliers that cause the (k+1)st least significant byte
to be zero. However, we cannot ensure that the padding
string is entirely nonzero; for a 2048-bit modulus this will
hold with probability 0.37.

For a 2048-bit modulus, the total expected number of
queries when using this technique to fully decrypt the
plaintext is 2048∗2/0.37≈ 11,000.

6

4 General DROWN
In this section, we describe how any correct SSLv2 im-
plementation that accepts export-grade cipher suites can
be used as a padding oracle. We then show how to adapt
the techniques described in Section 3.3 to decrypt TLS
RSA ciphertexts.

4.1 The SSLv2 export padding oracle
SSLv2 is vulnerable to a direct message side channel
vulnerability exposing a Bleichenbacher oracle to the
attacker. The vulnerability follows from three prop-
erties of SSLv2. First, the server immediately re-
sponds with a ServerVerify message after receiving the
ClientMasterKey message, which includes the RSA ci-
phertext, without waiting for the ClientFinished mes-
sage that proves the client knows the RSA plaintext. Sec-
ond, when choosing 40-bit export RC2 or RC4 as the sym-
metric cipher, only 5 bytes of the master_key (mksecret)
are sent encrypted using RSA, and the remaining 11 bytes
are sent in cleartext. Third, a server implementation that
correctly implements the anti-Bleichenbacher counter-
measure and receives an RSA key exchange message with
invalid padding will generate a random premaster secret
and carry out the rest of the TLS handshake using this
randomly generated key material.

This allows an attacker to deduce the validity of RSA
ciphertexts in the following manner:

1. The attacker sends a ClientMasterKey mes-
sage, which contains an RSA ciphertext c0 and
any sequence of 11 bytes as the clear portion
of the master_key, mkclear. The server re-
sponds with a ServerVerify message, which
contains the challenge encrypted using the
server_write_key.

2. The attacker performs an exhaustive search over
the possible values of the 5 bytes of the
master_key mksecret . He then computes the
corresponding server_write_key and checks
whether the ServerVerify message decrypts to the
challenge. One value should pass this check; let
this value be termed mk0. Recall that if the RSA
plaintext was valid, mk0 is the unpadded data in the
RSA plaintext. Otherwise, mk0 is a randomly gener-
ated sequence of 5 bytes.

3. The attacker re-connects to the server with the
same RSA ciphertext c0. The server responds
with another ServerVerify message that contains
the current challenge encrypted using the current
server_write_key. If the decrypted RSA cipher-
text was valid, the attacker can directly decrypt a
correct challenge value from the ServerVerify
message by using the master_key mk0. Otherwise,
if the ServerVerify message does not correctly

TLS
Client
TLS

Client

Attack
Algorithm

Attack
Algorithm

TLS
Server
TLS

Server

ClientHello

ServerHelloCertificateServerHelloDone

ClientHello

ServerHello

ClientMasterKey

ClientHello
Finished

CertificateFinished

ServerHelloDone

Record TLS 1.2 handshake

Chosen-ciphertext attack

...

SSLv2
Server
SSLv2
Server

Bleichenbacher Oracle

Break 40-bit
encryption

Break 40-bit
encryption

c
RSA

c'
RSA

c
RC2

k
RC2 m?

ServerVerify

ClientKeyExchange

Figure 2: Our SSLv2-based Bleichenbacher attack on
TLS. An attacker passively collects RSA ciphertexts from
a TLS 1.2 handshake, and then performs oracle queries
against a server that supports SSLv2 with the same public
key to decrypt the TLS ciphertext.

decrypt to the challenge, the RSA ciphertext was
invalid, and the attacker knows the mk0 value was
generated at random.

Thus we can instantiate an oracle OSSLv2-export using
the procedure above; each oracle query requires two
server connections and 240 decryption attempts in the
simplest case. For each oracle call OSSLv2-export(c), the
attacker learns whether c is valid, and if so, learns the
two most significant bytes 0x00 02, the sixth least sig-
nificant 0x00 delimiter byte, and the value of the 5 least
significant bytes of the plaintext m.

If the server does not support 40-bit export ciphers,
the attack can also be mounted in feasible computation
time by choosing DES as the symmetric cipher. Choosing
DES means the exhaustive search is now done over a key
space of 56 bits, thus increasing the cost of the attack by a
factor of 216, but does not fundamentally change anything
except the increased cost.

4.2 TLS decryption attack

In this section, we describe how the oracle described in
Section 4.1 can be used to carry out a feasible attack to
decrypt passively collected TLS ciphertexts.

7

4.2.1 Attack scenario
As described in Section 3.1, we consider a server that ac-
cepts TLS connections from clients using an RSA public
key that is exposed via SSLv2, and an attacker who is
able to passively observe these connections.

Server supports export cipher suites for SSLv2. We
also assume the server supports export cipher suites for
SSLv2. This can happen for two reasons. First, the
same servers that fail to follow best practices in disabling
SSLv2 [45] may also fail to follow best practices by sup-
porting export cipher suites. Alternatively, the servers
might be running a version of OpenSSL prior to January
2016, in which case they are vulnerable to the OpenSSL
cipher suite selection bug described in Section 2.3, and
an attacker may negotiate a cipher suite of his choice
independent of the server configuration.

Correct Bleichenbacher countermeasure. We assume
the server implements the recommended countermeasure
against Bleichenbacher’s attack in all protocol versions,
including SSLv2. If the decrypted RSA ciphertext has
invalid padding, the server generates a random premaster
secret or master_key and continues the handshake with
this random string. We assume this countermeasure is
implemented correctly and the server is neither vulnerable
to timing nor flush-and-reload side-channel attacks [36,
49].

Computing power. The attacker needs access to com-
puting power sufficient to perform a 250 time attack,
mostly brute forcing symmetric key encryption. After
our optimizations, this can be done with a one-time in-
vestment of a few thousand dollars of GPUs, or in a few
hours for a few hundred dollars in the cloud. Our cost
estimates are described in Section 4.3.

4.2.2 Constructing the attack
The attacker can exploit the SSLv2 vulnerability as illus-
trated in Figure 2, following the generic attack outline
described in Section 3.3 and has several distinct phases:

0. He passively collects 1,000 TLS handshakes from
connections using RSA key exchange.

1. The attacker then attempts to convert the intercepted
TLS ciphertexts containing a 48-byte premaster se-
cret to valid RSA PKCS#1 v1.5 encoded ciphertexts
containing five-byte messages using the fractional
trimmers described in Section 3.3.1, and querying
OSSLv2-export. The attacker sends the modified ci-
phertexts to the server using fresh SSLv2 connec-
tions with weak symmetric ciphers and uses the
ServerVerify messages to deduce ciphertext va-
lidity as described in the previous section. For each
queried RSA ciphertext, the attacker must perform
a brute force attack on the weak symmetric cipher.

The attacker expects to obtain a valid SSLv2 cipher-
text after roughly 10,000 oracle queries, or 20,000
connections to the server.

2. Once the attacker has obtained a valid SSLv2 RSA
ciphertext m1, he uses the shifting technique ex-
plained in Section 3.3.2 to find an integer s1 such
that m2 = m1 · 2−40 · s1 is also SSLv2 conformant.
Appendix B.4 contains more details on this step.

3. The attacker then applies the shifting technique again
to find another integer s2 such that m3 =m2 ·2−40 ·s2
is also SSLv2 conformant.

4. He then searches for yet another integer s3 such that
m3 · s3 is also SSLv2 conformant.

5. Finally, the attacker can continue with our adapted
Bleichenbacher iteration technique described in Sec-
tion 3.3.3, and decrypts the message after an ex-
pected 10,000 additional oracle queries, or 20,000
connections to the server.

6. The attacker can then transform the decrypted plain-
text back into the original plaintext, which is one of
the 1,000 intercepted TLS handshakes.

The rationale behind the different phases. Bleichen-
bacher’s original algorithm requires a conformant mes-
sage m0, and a multiplier s1 such that m1 = m0 · s1 is also
conformant. Naïvely, it would appear we can apply the
same algorithm here, after completing Phase 1. However,
the original algorithm expects s1 to be of size about 224.
This is not the case when we use fractions for s1, as the
integer s1 = ut−1 mod N will be the same size as N.

Therefore, our approach is to find a conformant mes-
sage for which we know the 5 most significant bytes; this
will happen after multiple rotations and this message will
be m3. After finding such a message, finding s3 such that
m4 = m3 · s3 is also conformant becomes trivial. From
there, we can finally apply the adapted Bleichenbacher
iteration technique as described in Appendix B.5.

4.2.3 Attack performance
The attacker wishes to minimize three major costs in the
attack: the number of recorded ciphertexts from the victim
client, the number of connections to the victim server, and
the number of symmetric keys to be brute forced. The
requirements for each of these elements are governed
by the set of fractions to be multiplied with each RSA
ciphertext in the first phase, as described in Section 3.3.1.

Table 1 highlights a few choices for F and the resutling
performance metrics for 2048-bit RSA keys. Appendix
B.6 provides more details on the derivation of these num-
bers and other possible optimization choices. Table 2
gives the expected number of Bleichenbacher queries for
different RSA key sizes, when minimizing total oracle
queries.

8

Optimizing Cipher- |F | SSLv2 Offline
for texts connections work

offline work 12,743 1 50,421 249.64

offline work 1,055 10 46,042 250.63

compromise 4,036 2 41,081 249.98

online work 2,321 3 38,866 251.99

online work 906 8 39,437 252.25

Table 1: 2048-bit Bleichenbacher attack complexity.
The cost to decrypt one ciphertext can be adjusted by
choosing the set of fractions F the attacker applies to
each of the passively collected ciphertexts in the first
step of the attack. This choice affects several parameters:
the number of these collected ciphertexts, the number of
connections the attacker makes to the SSLv2 server, and
the number of offline decryption operations.

Key size Phase 1 Phases 2–5 Total Offline
queries work

1024 4,129 4,132 8,261 250.01

2048 6,919 12,468 19,387 250.76

4096 18,286 62,185 80,471 252.16

Table 2: Oracle queries required by our attack. In
Phase 1, the attacker queries the oracle until an SSLv2
conformant ciphertext is found. In Phases 2–5, the at-
tacker decrypts this ciphertext using leaked plaintext.
These numbers minimize total queries. In our attack,
an oracle query represents two server connections.

4.3 Implementing general DROWN with GPUs
The most computationally expensive part of our general
DROWN attack is breaking the 40-bit symmetric key, so
we developed a highly optimized GPU implementation of
this brute force attack. Our first naïve GPU implementa-
tion performed around 26MH/s, where MH measures the
calculation of an MD5 hash and the RC2 decryption. Our
optimized implementation gave a final speed of 515MH/s,
a speedup factor of 19.8.

We obtained our improvements through a number of
optimizations. Our original implementation ran into a
communication bottleneck in the PCI-E bus in transmit-
ting candidate keys from CPU to GPU, so we removed
this bottleneck by generating key candidates on the GPU
itself. We optimized memory management, including stor-
ing candidate keys and the RC2 permutation table in con-
stant memory, which is almost as fast as a register, instead
of slow global memory. We optimized the cryptographic
checks themselves by rewriting the RC2 implementation
to use 32-bit instructions, removing unnecessary RC2 key-
size checks, dropping unused ADD instructions during
MD5, and manually shifting input bytes into the MD5

input registers to avoid loop branches. We describe these
optimizations in further detail in Appendix C.

We experimentally evaluated our optimized implemen-
tation on a local cluster and in the cloud. We used it to
execute a full attack of 249.6 tested keys on each platform.
The required number of keys to test during the attack is
a random variable, distributed geometrically, with an ex-
pectation that ranges between 249.6 and 252.5 depending
on the choice of optimization parameters. We treat a full
attack as requiring 249.6 tested keys overall.

Hashcat. Hashcat[21] is an open source optimized
password-recovery tool. The Hashcat developers allowed
us to use their GPU servers for our attack evaluation. The
servers contain a total of 40 GPUs: 32 Nvidia GTX 980
cards, and 8 AMD R9 290X cards. The value of this
equipment is roughly $18,040. Our full attack took less
than 18 hours to complete on the Hashcat servers, with
the longest single instance taking 17h9m.

Amazon EC2. We also ran our optimized GPU code on
the Amazon Elastic Compute Cloud (EC2) [4] service.
We used a cluster composed of 200 variable-price “spot”
instances: 150 g2.2xlarge instances, each of which
contains one high-performance NVIDIA GPU with 1,536
CUDA cores and 50 g2.8xlarge instances, each contain-
ing four of these GPUs. When we ran our experiments
in January 2016, the average spot rates we paid were
$0.09/hr and $0.83/hr respectively. Our full attack fin-
ished in under 8 hours including startup and shutdown for
a cost of $440. See Appendix D for more details.

5 Special DROWN
We discovered a vulnerability in recent (but not current)
versions of the OpenSSL SSLv2 handshake code that
creates a powerful Bleichenbacher oracle, and drastically
reduces the amount of computation required to implement
our attack. The vulnerability, which has been designated
CVE-2016-0703, was present in the OpenSSL codebase
from at least the start of the repository, in 1998, until it
was unknowingly fixed on March 4, 2015 by a patch [28]
designed to correct an unrelated problem [12]. By adapt-
ing DROWN to exploit this special case, we can cut the
number of connections required by more than 50% and
reduce the computational work to a negligible amount.

5.1 The OpenSSL “extra clear” oracle
Prior to the fix, OpenSSL servers improperly al-
lowed the ClientMasterKey message to contain
clear_key_data bytes for non-export ciphers. When
such bytes are present, the server substitutes them for
bytes from the encrypted key. For example, consider the
case that the client chooses a 128-bit cipher and sends
a 16-byte encrypted key k[1],k[2], . . . ,k[16] but, contrary
to the protocol specification, includes 4 null bytes of
clear_key_data. Vulnerable OpenSSL versions will

9

construct the following master_key:

[00 00 00 00 k[1] k[2] k[3] k[4] . . . k[9] k[10] k[11] k[12]]

This enables a straightforward key-recovery attack
against such versions. An attacker that has intercepted
an SSLv2 connection takes the RSA ciphertext of the
encrypted key and replays it in non-export handshakes to
the server with varying lengths of clear_key_data. For
a 16-byte encrypted key, the attacker starts with 15 bytes
of clear key, causing the server to use the master_key:

[00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 k[1]]

The attacker can brute force the first byte of the en-
crypted key by finding the matching ServerVerify mes-
sage among 256 possibilities. Knowing the first byte,
the attacker makes another connection with the same
RSA ciphertext but 14 bytes of clear key, resulting in
the master_key:

[00 00 00 00 00 00 00 00 00 00 00 00 00 00 k[1] k[2]]

Since the attacker already knows k[1], he can easily
brute force the second byte. With only 15 probe con-
nections and an expected 15 · 128 = 1,920 trial encryp-
tions, the attacker learns the entire master_key for the
recorded session.

This session key-recovery attack can be directly con-
verted to a Bleichenbacher oracle. Given a candidate
ciphertext and symmetric key length k, the attacker sends
the ciphertext with k known bytes of clear_key_data.
The oracle decision is simple:

• If the ciphertext is valid, the ServerVerify mes-
sage will reflect a master_key consisting of those
k known bytes.

• If the ciphertext is invalid, the master_key will
be replaced with k random bytes (by following the
countermeasure against the Bleichenbacher attack),
resulting in a different ServerVerify message.

This oracle decision requires one connection to the
server and one ServerVerify computation. After the
attacker has found a valid ciphertext corresponding to
a k-byte encrypted key, they can recover the k plaintext
bytes by repeating the key recovery attack from above.
Thus our oracle OSSLv2-extra-clear(c) requires one connec-
tion to determine whether c is valid, and thus the two
most significant bytes 0x00 02 of the plaintext m. After
k connections, the attacker can additionally learn the k
least significant bytes of m. We model this as a single
oracle call, but the number of server connections will vary
depending on the response.

5.2 TLS decryption with special DROWN
Using our oracle OSSLv2-extra-clear, we can construct an
extremely efficient version of our TLS decryption attack.
The OpenSSL extra clear oracle provides three significant

advantages over our export oracle OSSLv2-export: (1) It no
longer requires an export cipher suite, and, in fact, we
gain efficiency by exploiting regular SSLv2 ciphers; (2)
It requires only one handshake per oracle query; and (3)
Computation is reduced to one ServerVerify decryp-
tion per oracle query, versus 240.

5.2.1 Attack scenario
As before, we consider a server that accepts TLS connec-
tions, and a client that negotiates a secure, state-of-the-art
TLS version with a TLS_RSA cipher suite. The same RSA
key pair used for TLS is also used on a server that is
running a vulnerable version of OpenSSL.

5.2.2 Constructing the attack
The attacker can exploit the OpenSSL extra clear
vulnerability to efficiently decrypt a TLS cipher-
text as follows. We will use the cipher suite
SSL_DES_192_EDE3_CBC_WITH_MD5 as the cipher suite,
allowing the attacker to recover 24 bytes of key at a time
from the oracle. We first present a straightforward adap-
tation of the general DROWN attack to the extra clear
oracle, before later applying a few additional optimiza-
tions made possible by this new oracle.

0. The attacker intercepts several hundred TLS hand-
shakes using RSA key exchange.

1. The attacker uses the fractional trimmers as de-
scribed in Section 3.3.1 to convert the TLS cipher-
texts into an SSLv2 conformant ciphertext c0.

2. Once the attacker has obtained a valid SSLv2 ci-
phertext c1, he repeatedly uses the shifting technique
described in Section 3.3.2 to rotate the message by
25 bytes each iteration, learning 27 bytes with each
shift. After several iterations, he has learned the
entire plaintext.

3. The attacker then transforms the decrypted SSLv2
plaintext into the decrypted TLS plaintext.

Attack costs Using 40 fractional trimmers, this more
efficient oracle attack allows the attacker to recover one
in 260 TLS session keys using only about 17,000 connec-
tions to the server. The computation cost is so low that
we can complete the full attack on a single workstation in
under one minute. Appendix B.7 gives more details.

Mounting the attack using the optimized version of
Special DROWN described in Appendix B.7 allows the
attacker to target one of 100 connections, at the expense
of increasing the number of queries to 27,000.

5.3 MITM attack against TLS
Special DROWN is fast enough that it can decrypt a TLS
premaster secret online, during a connection handshake.
A man-in-the-middle attacker can use it to compromise

10

All Certificates Trusted certificates

Protocol Port SSL/TLS SSLv2
support

Vulnerable
key SSL/TLS SSLv2

support
Vulnerable

key

SMTP 25 3,357 K 936 K (28%) 1,666 K (50%) 1,083 K 190 K (18%) 686 K (63%)
POP3 110 4,193 K 404 K (10%) 1,764 K (42%) 1,787 K 230 K (13%) 1,031 K (58%)
IMAP 143 4,202 K 473 K (11%) 1,759 K (42%) 1,781 K 223 K (13%) 1,022 K (57%)
HTTPS 443 34,727 K 5,975 K (17%) 11,444 K (33%) 17,490 K 1,749 K (10%) 3,931 K (22%)
SMTPS 465 3,596 K 291 K (8%) 1,439 K (40%) 1,641 K 40 K (2%) 949 K (58%)
SMTP 587 3,507 K 423 K (12%) 1,464 K (42%) 1,657 K 133 K (8%) 986 K (59%)
IMAPS 993 4,315 K 853 K (20%) 1,835 K (43%) 1,909 K 260 K (14%) 1,119 K (59%)
POP3S 995 4,322 K 884 K (20%) 1,919 K (44%) 1,974 K 304 K (15%) 1,191 K (60%)

(Alexa 1M) 443 611 K 82 K (13%) 152 K (25%) 456 K 38 K (8%) 109 K (24%)

Table 3: Hosts vulnerable to general DROWN. We performed Internet-wide scans to measure the number of hosts
supporting SSLv2 on several different protocols. A host is vulnerable to DROWN if its public key is exposed anywhere
via SSLv2. Overall vulnerability to DROWN is much larger than support for SSLv2 due to widespread reuse of keys.

connections between modern browsers and TLS servers—
even those configured to prefer non-RSA cipher suites.

Attack scenario. The MITM attacker impersonates the
server and sends a ServerHello message that selects a
cipher suite with RSA as the key-exchange method. Then,
the attacker uses special DROWN to decrypt the premas-
ter secret. The main difficulty is completing the decryp-
tion and producing a valid ServerFinished message
before the client’s connection times out. Most browsers
will allow the handshake to last up to one minute [1].

Using the fully optimized version of special DROWN,
the attack still requires intercepting an average of 100
ciphertexts, only one of which will be decrypted, proba-
bilistically. The simplest way for the attacker to facilitate
this is to use JavaScript to cause the client to connect re-
peatedly to the victim server, as described in Section 3.1.
Each connection is tested against the oracle with only
small number of fractions, and the attacker can discern
immediately when he receives a positive response from
the oracle.

Once the attacker has obtained a positive response, he
can proceed to the final phase of the special DROWN
attack described above, which employs 200-bit rotation
10 times to fully decrypt the plaintext. Our current imple-
mentation requires under 30 seconds for this phase on a
single PC.

The ability of the victim server to perform 17,000 hand-
shakes in less than a minute is not an impediment for mod-
ern hardware. An RSA private key operation with a 2048-
bit modulus requires on the order of 1 ms using OpenSSL
on a recent-generation CPU, so the cryptographic portion
of the attacker’s queries induces additional server load of
roughly 14 core-seconds. In tests with a nearby server
running Apache 2.4, we could easily complete 10,000
HTTPS requests in under 10 seconds.

6 Measurements
We performed Internet-wide scans to analyze the number
of systems vulnerable to DROWN. A host is directly
vulnerable to general DROWN if it supports SSLv2. Sim-
ilarly, a host is directly vulnerable to special DROWN
if it supports SSLv2 and has the extra clear bug. These
directly vulnerable hosts can be used as oracles to at-
tack any other host with the same key. Hosts that do not
support SSLv2 are still vulnerable to general or special
DROWN if their RSA key pair is exposed by any general
or special DROWN oracle, respectively. The oracles may
be on an entirely different host or port. Additionally, any
host serving a browser-trusted certificate is vulnerable to
a special DROWN man-in-the-middle if any name on the
certificate appears on any other certificate containing a
key that is exposed by a special DROWN oracle.

We used ZMap [17] to perform full IPv4 scans on
eight different ports during late January and February
2016. We examined port 443 (HTTPS), and common
email ports 25 (SMTP with STARTTLS), 110 (POP3
with STARTTLS), 143 (IMAP with STARTTLS), 465
(SMTPS), 587 (SMTP with STARTTLS), 993 (IMAPS),
and 995 (POP3S). For each open port, we attempted three
complete handshakes: one normal handshake with the
highest available SSL/TLS version; one SSLv2 handshake
requesting an export RC2 cipher suite; and one SSLv2
handshake with a non-export cipher and sixteen bytes of
plaintext key material sent during key exchange, which
we used to detect if a host has the extra clear bug.

We summarize our general DROWN results in Table 3.
The fraction of SSL/TLS hosts that directly supported
SSLv2 varied substantially across ports. 28% of SMTP
servers on port 25 supported SSLv2, likely due to the
opportunistic encryption model for email transit. Since
SMTP fails-open to plaintext, many servers are config-
ured with support for the largest possible set of protocol

11

Any certificate Trusted certificates

Protocol Port SSL/TLS Special DROWN
oracles

Vulnerable
key SSL/TLS Vulnerable

key
Vulnerable

name

SMTP 25 3,357 K 855 K (25%) 896 K (27%) 1,083 K 305 K (28%) 398 K (37%)
POP3 110 4,193 K 397 K (9%) 946 K (23%) 1,787 K 485 K (27%) 674 K (38%)
IMAP 143 4,202 K 457 K (11%) 969 K (23%) 1,781 K 498 K (30%) 690 K (39%)
HTTPS 443 34,727 K 4,029 K (12%) 9,089 K (26%) 17,490 K 2,523 K (14%) 3,793 K (22%)
SMTPS 465 3,596 K 334 K (9%) 765 K (21%) 1,641 K 430 K (26%) 630 K (38%)
SMTP 587 3,507 K 345 K (10%) 792 K (23%) 1,657 K 482 K (29%) 667 K (40%)
IMAPS 993 4,315 K 892 K (21%) 1,073 K (25%) 1,909 K 602 K (32%) 792 K (42%)
POP3S 995 4,322 K 897 K (21%) 1,108 K (26%) 1,974 K 641 K (32%) 835 K (42%)

(Alexa 1M) 443 611 K 22 K (4%) 52 K (9%) 456 K (100%) 33 K (7%) 85 K (19%)

Table 4: Hosts vulnerable to special DROWN. A server is vulnerable to special DROWN if its key is exposed by a
host with the CVE-2016-0703 bug. Since the attack is fast enough to enable man-in-the-middle attacks, a server is also
vulnerable (to impersonation) if any name in its certificate is found in any trusted certificate with an exposed key.

versions and cipher suites, under the assumption that even
bad or obsolete encryption is better than plaintext [10].
The other email ports ranged from 8% for SMTPS to 20%
for POP3S and IMAPS. We found 17% of all HTTPS
servers, and 10% of those with a browser-trusted certifi-
cate, are directly vulnerable to General DROWN.

Widespread public key reuse. Reuse of RSA key ma-
terial across hosts and certificates is widespread, as has
been documented in [23, 34]. In many cases this is be-
nign: many organizations issue multiple TLS certificates
for distinct domains (e.g. one for each TLD) with the
same public key; reusing the same key simplifies the use
of SSL acceleration hardware and load balancing. How-
ever, there is also evidence that system administrators
may not entirely understand the role of the public key
in certificates. For example, in the wake of the Heart-
bleed vulnerability, a substantial fraction of compromised
certificates were reissued with the same public key [16].

There are many reasons why the same public key or cer-
tificate would be reused across different ports and services
within an organization. For example a mail server that
serves SMTP, POP3, and IMAP from the same daemon
would likely share the same TLS configuration. Addition-
ally, an organization might choose to purchase a single
wildcard TLS certificate, and use it on both web servers
and mail servers. Public keys have also been observed to
be widely shared across independent organizations due to
default certificates and public keys that are shipped with
networked devices and software, improperly configured
virtual machine images, and random number generation
flaws.

The number of hosts vulnerable to DROWN rises sig-
nificantly when we take RSA key reuse into account. For
HTTPS, 17% of hosts are vulnerable to general DROWN
because they support both TLS and SSLv2 on the HTTPS

port, but the number of vulnerable hosts rises to 33%
when considering RSA keys used by another service that
is vulnerable to DROWN. Appendix A gives more de-
tailed statistics on the reuse of RSA key material across
hosts and ports.

Special DROWN. As shown in Table 4, 9.1 M HTTPS
servers (26%) are vulnerable to special DROWN, as
are 2.5 M HTTPS servers with browser-trusted certifi-
cates (14%). 66% as many HTTPS hosts are vulnerable to
special DROWN as to general DROWN (70% for browser-
trusted servers). While there are 2.7 M public keys that
are vulnerable to general DROWN, we find 1.1 M vulner-
able to special DROWN (41% as many). Vulnerability
among Alexa Top Million domains is lower, with only
9% of Alexa domains vulnerable (7% for browser-trusted
domains).

Since special DROWN enables active man-in-the-
middle attacks, any host serving a browser-trusted certifi-
cate with at least one name that appears on any certificate
with a key exposed by a special DROWN oracle is vulner-
able to a impersonation attacks. Extending our search to
account for shared names, we find 3.8 M (22%) of hosts
with browser-trusted certificates are vulnerable to man-in-
the-middle, as well as 19% of the browser-trusted Alexa
Top Million.

7 Signature forgery attacks and QUIC
An attacker can also use a Bleichenbacher-type attack
to compute valid RSA signatures on arbitrary messages.
Mathematically, RSA signing and decryption are identi-
cal. Such an attack could theoretically be used to forge a
signed Server Key Exchange message for Diffie-Hellman
cipher suites, thus allowing an attacker to perform a
man-in-the-middle attack against all TLS versions up
to TLSv1.3. [26] Since the server key exchange message
includes the client and server randoms, the attacker must

12

forge the signature online before the handshake times
out. We are not able to use all of our optimizations for
signature forgery, so such an attack does not seem fea-
sible without additional improvements, even for special
DROWN.

7.1 Extending the attack to QUIC
However, our attack can be extended to a feasible-time
man-in-the-middle attack against QUIC [26]. QUIC [42,
11] is a recent cryptographic protocol designed and im-
plemented by Google that is intended to reduce the setup
time to establish a secure connection while providing
security guarantees analogous to TLS. QUIC’s security
relies on a static “server config” message signed by the
server’s public key. Jager et al. [26] observe that an at-
tacker who can forge a signature on a malicious QUIC
server config once would be able to impersonate the server
indefinitely. In this section, we show an attacker with sig-
nificant resources would be able to successfully mount
such an attack against a server who exposed their RSA
public keys via SSLv2.

A QUIC client receives a “server config” message enu-
merating connection parameters, a static elliptic curve
Diffie-Hellman public value, and a validity period that is
signed by the server’s public key. An attacker could gen-
erate a Diffie-Hellman public value for which he knows
the private key, and set the expiration date far in the future
in order to mount a man-in-the-middle attack against any
client.

Unauthenticated QUIC discovery. In order to mount
the attack, the attacker needs to present a forged QUIC
config to the client. This is straightforward, since QUIC
discovery may happen over non-encrypted HTTP [20].
The server does not even need to support QUIC at all: an
attacker could impersonate the attacked server over an un-
encrypted connection and falsely indicate that the server
supports QUIC. The next time the client connects to the
server, it will attempt to connect using QUIC, allowing
the attacker to present the forged “server config” message
and execute the attack. [26]

Signature forgery details. The attack proceeds much as
in Section 3.3, except that we are not able to use some of
the optimizations so it is more expensive.

The first step is to discover a valid, PKCS conformant
SSLv2 ciphertext. In the case of TLS decryption, our
input ciphertext was PKCS conformant to begin with; this
is not the case for our QUIC message c0. Thus for the
first phase, we iterate through possible multiplier values
s until the attacker randomly encounters a valid SSLv2
message in c0 · s. For 2048-bit RSA keys, the probability
of this random event is Prnd ≈ 2−25; see Section 3.3 for
the computation.

Once the first SSLv2 conformant message is found,

the attacker proceeds with the signature forgery as he
would in Step 2 of the attack against TLS. The required
number of oracle queries for this step is roughly 12,468
for 2048-bit RSA keys.

Attack cost. The overall oracle query cost is dominated
by the 225 = 34 million expected queries in the first phase,
above. At a rate of 388 queries/second, an attacker would
finish in one day; at a rate of 12 queries/second an attacker
would finish in one month.

For the SSLv2 export padding oracle, the offline com-
putation to break a 40-bit symmetric key for each query
requires iterating over 265 keys. At our optimized GPU
implementation rate of 515 million keys per second, this
would require 829,142 GPU days. Our experimental GPU
hardware retails for $400. An investment of $10 million
to purchase 25,000 GPUs would reduce the wall clock
time for the attack to 33 days. Our implementation run
on Amazon EC2 processed about 174 billion keys per
g2.2xlarge instance-hour, so at a cost of $0.09/instance-
hour the full attack would cost $9.5 million dollars and
could be parallelized to Amazon’s capacity.

For the extra clear oracle, there is only negligible com-
putation per oracle query, so the computational cost for
the first phase is 225.

Future changes to QUIC. In addition to disabling
QUIC support for non-whitelisted servers, Google have
informed us that they plan to change the QUIC standard,
so that the “server config” message will include a client
nonce to prove freshness. They also plan to limit QUIC
discovery to HTTPS.

7.2 SSLv2 servers with CA certificates
Some web servers support SSLv2 while presenting a CA
certificate, which can be used to issue further leaf cer-
tificates. In that case, an attacker could create his own
certificate and use the vulnerable server to forge a CA sig-
nature over his certificate by executing an attack similar
to the above. The number of queries is identical to the
number of queries required for the attack against QUIC.
This attack would allow the attacker to impersonate any
website against any client trusting the CA certificate.

We did not observe any trusted CA certificates used on
vulnerable servers. We did, however, observe a number
of routers that supported SSLv2 while presenting CA
certificates that are untrusted by modern browsers.

8 Related work
Bleichenbacher’s attack. Bleichenbacher’s adaptive
chosen ciphertext attack against SSL was first published
in 1998 [9]. Since then, several works have adapted his
attack to different scenarios [29, 5, 25].

Despite the fact that the TLS standard [14] explicitly
introduces countermeasures against Bleichenbacher’s at-
tack, several modern implementations have been discov-

13

ered to be vulnerable to it in recent years. Meyer et al. [36]
inspected various software and hardware implementations
and discovered timing side-channels that enabled the at-
tack. Zhang et al. applied Bleichenbacher’s attack to
develop a cache flush-and-reload timing attack against
OpenSSL in cross-tenant environments [49]. These side-
channel attacks, however, are applicable only in scenarios
where the attacker is physically close to or co-located
with the victim and are based on implementation failures.

Cross-protocol attacks. Jager et al. [26] observed that a
cross-protocol Bleichenbacher RSA padding oracle attack
is possible against the proposed TLS 1.3 standard, in spite
of the fact that TLS 1.3 does not include RSA key ex-
change, if server implementations use the same certificate
for previous versions of TLS and TLS 1.3. Wagner and
Schneier [46] developed a cross-cipher suite attack for
SSLv3, in which an attacker could reuse a signed server
key exchange message in a later exchange with a different
cipher suite. Mavrogiannopoulos et al [33] developed
a cross-cipher suite attack allowing an attacker to use
elliptic curve Diffie-Hellman as plain Diffie-Hellman.

Attacks on export-grade cryptography. Recently, the
FREAK [6] and Logjam [1] attacks allowed an active
attacker to downgrade a connection to export-grade RSA
and Diffie-Hellman, respectively. Export-grade cryptog-
raphy plays an important role in DROWN as well, as it
exploits export-grade symmetric ciphers.

Further attacks on SSL/TLS. Other attacks on SSL
and TLS include: POODLE [37], which exploits SSLv3’s
lack of a requirement for the contents of padding bytes,
and its MAC-then-encrypt construction; CRIME [41],
which exploits support for compression and observes ci-
phertexts’ lengths in order to decrypt traffic; The RC4
Biases attack [3], which utilizes biases in the the RC4
keystream; Lucky13 [2], which exploits small timing dif-
ferences and MAC-then-encrypt; and BEAST [15], which
exploits predictable IVs in TLS. Bhargavan and Leurent
presented SLOTH attacks and broke TLS and other proto-
cols using MD5 for computing transcript hashes [8].

9 Discussion
9.1 Lessons for protocol design
A natural question is to ask whether SSLv3 or later ver-
sions of TLS could also be vulnerable. Our attack exploits
two properties of the SSLv2 protocol:

Server authenticates first. First, the fact that in SSLv2
the server responds to the ClientMasterKey message
before the client proves it has knowledge of the RSA
plaintext, provides a direct message side channel. In
SSLv3 and later, the client must demonstrate knowledge
of the RSA plaintext first via a valid ClientFinished
message before the server sends a message derived from

the RSA plaintext. In order to perform a similar attack
in this case, the client would need to perform an online
brute-force attack.

Short secrets. Second, SSLv2 allows RSA plaintexts
that are short enough to be vulnerable to a feasible-time
brute force search. For export ciphers, the unpadded
RSA plaintext is five bytes long. In SSLv3 and later
versions of TLS, the RSA plaintexts and premaster secret
length is 48 bytes, even for export ciphers with 40-bit
strength. For later protocol versions, an attacker can
perform a brute-force search over the derived 40-bit key
if a client negotiates an export cipher suite, but the 48-
byte premaster secret length appears to prevent an attacker
from escalating the weakness of the export cipher strength
into a similar protocol vulnerability.

9.2 Implications for modern protocols
Modern TLS versions are not vulnerable to the precise
attack given in this paper, but they have similar properties
that might allow a related attack.

Although we do not present concrete attacks on mod-
ern protocols, we argue that modern practices of cryp-
tographic protocol design do not include a systematic
analysis to prevent direct message side channel Bleichen-
bacher attacks. A hypothesized protocol with modern
parameters would be vulnerable to such an attack if it has
the following properties:

1. RSA key exchange. TLS 1.2 [14] allows this.

2. It allows re-use of server-side nonce by the client.
QUIC [11] allows this.

3. The server sends the first message encrypted using
a key derived from the asymmetric key exchange.
QUIC, TLS 1.3 [39], and TLS False Start [30] ex-
hibit this property.

When all three properties are combined, a natural adap-
tation of our attack presents itself. The attacker obtains a
Bleichenbacher oracle by connecting to the server twice
with the same RSA ciphertext and the same server-side
nonce, and comparing the messages sent by the server. If
the RSA ciphertext is PKCS conformant, the two mes-
sages will be identical. Otherwise, they will differ. Note
that we also assumed that all symmetric cipher parame-
ters, including IVs for block ciphers, are deterministically
generated from the premaster secret and nonces; this is the
case for TLS 1.0. If that is not the case, in most realistic
configurations, the attacker can choose a stream cipher.

An attacker can use False Start to cause a victim client
to perform TLS handshakes using RSA for key exchange,
even if the server supports other key exchange methods
which provide Perfect Forward Secrecy. The attacker
masquerades as the server and indicates support for RSA
key exchange only. The client will then handshake using

14

RSA, and send application layer data, before the server
authenticates by sending the Finished message. The
False Start standard indeed discourages the use of RSA as
the key exchange method, but does not explicitly forbid it,
leaving the security of the protocol dependent on correct
choices in the client configuration. Our attacks show that
relying on such assumptions is extremely brittle protocol
design.

9.3 Lessons for key reuse
Our attacks also illustrate another important crypto-
graphic principle: that keys should be single use. For
public keys we think of this principle as applying primar-
ily to keys that are used to both sign and decrypt, but
our attacks illustrate that using keys for different protocol
versions can also be a serious security risk. Unfortunately,
the TLS certificate authority funding model produces a
financial incentive for users to purchase as few certificates
as necessary to protect their infrastructure. However, even
without this financial incentive in place, the sheer number
of SSL/TLS protocol versions in use would make key
management difficult.

9.4 Harms from obsolete cryptography
Recent years have seen a significant number of serious
attacks exploiting outdated and obsolete cryptography.
Many of these protocols and cryptographic primitives are
surprisingly common in deployed systems even decades
after they were demonstrated to be weak.

The attack described in this paper exploits a modifi-
cation of an 18-year-old attack against a combination of
protocols and ciphers that have long been superseded by
better options: the SSLv2 protocol, export cipher suites,
and PKCS #1 v1.5 RSA padding. In fact, support for RSA
as a key exchange method, including the use of PKCS #1
v1.5, is mandatory even for TLS 1.2. The attack is made
more severe by implementation flaws in rarely-used code.

Our work serves as yet another reminder of the im-
portance of removing deprecated technologies before
they become exploitable vulnerabilities. In response to
many of the vulnerabilities listed above, browser ven-
dors have been aggressively warning end users when TLS
connections are negotiated with unsafe cryptographic pa-
rameters, including SHA-1 certificates, small RSA and
Diffie-Hellman parameters, and SSLv3 connections. This
process is currently happening in a piecemeal fashion,
primitive by primitive. Vendors and developers rightly
prioritize usability and backward compatibility, and are
willing to sacrifice these only for practical attacks. This
standard works less well for cryptographic vulnerabilities,
where the first sign of a weakness, while far from being
practically exploitable, can signal trouble in the future.
Communication issues between academic researchers and
vendors and developers have been voiced by many in the

community, including Green [32] and Jager et al. [24].
The long-term solution is to proactively remove these

obsolete technologies. There has been a movement to-
wards this already: TLS 1.3 has removed RSA key ex-
change entirely and has restricted Diffie-Hellman key
exchange to a few groups large enough to withstand crypt-
analytic attacks long in the future. The CA/Browser forum
will remove support for SHA-1 certificates this year. And
resources such as the SSL Labs SSL Reports have gath-
ered information about best practices and vulnerabilities
in one place, in order to encourage administrators to make
the best choices.

9.5 Harms from deliberately weakening cryp-
tography

Export-grade cipher suites for TLS deliberately weakened
three primitives to the point that they are broken even to
enthusiastic amateurs today: 512-bit RSA key exchange,
512-bit Diffie-Hellman key exchange, and 40-bit symmet-
ric encryption. All three deliberately-weakened primitives
have been cornerstones of high-profile attacks: FREAK at-
tack against export RSA, Logjam against Diffie-Hellman,
and our DROWN attack against export-grade symmetric
cryptography.

Our results illustrate, like FREAK and Logjam, the
continued harm that a legacy of deliberately weakened
export-grade cryptography inflicts on the security of mod-
ern systems, even decades after the regulations influenc-
ing the original design were lifted. The attacks described
in this paper are fully feasible against export cipher suites
today; against even DES they would be at the limits of the
computational power available to an attacker. The techni-
cal debt induced by cryptographic “front doors” has left
implementations vulnerable for decades. Together with
the slow rate at which obsolete protocols and primitives
entirely disappear, we can expect some fraction of hosts
to continue to be vulnerable for years to come.

Acknowledgements
The authors thank team Hashcat for making their GPUs
available for the execution of the attack, Ralph Holz
for providing early scan data, Adam Langley for in-
sights about QUIC, Graham Steel for insights about TLS
False Start, the OpenSSL team for their help with dis-
closure, Ivan Ristic for comments on session resumption
in a BEAST-styled attack, and Tibor Jager and Christian
Mainka for further helpful comments.

This material is based upon work supported by the
U.S. National Science Foundation under Grants No. CNS-
1345254, CNS-1408734, CNS-1409505, CNS-1505799,
CNS-1513671, and CNS-1518888, an AWS Research Ed-
ucation grant, a scholarship from the Israeli Ministry of
Science, Technology and Space, a grant from the Blavat-
nik Interdisciplinary Cyber Research Center (ICRC) at Tel

15

Aviv University, a gift from Cisco, and an Alfred P. Sloan
Foundation research fellowship. Any opinions, findings,
and conclusions or recommendations expressed in this
material are those of the authors and do not necessarily
reflect the views of the U.S. National Science Foundation.

References
[1] ADRIAN, D., BHARGAVAN, K., DURUMERIC, Z., GAUDRY, P.,

GREEN, M., HALDERMAN, J. A., HENINGER, N., SPRINGALL,
D., THOMÉ, E., VALENTA, L., VANDERSLOOT, B., WUSTROW,
E., ZANELLA-BÉGUELIN, S., AND ZIMMERMANN, P.
Imperfect forward secrecy: How Diffie-Hellman fails in practice.
In 22nd ACM Conference on Computer and Communications
Security (Oct. 2015).

[2] AL FARDAN, N. J., AND PATERSON, K. G. Lucky thirteen:
Breaking the TLS and DTLS record protocols. In IEEE
Symposium on Security and Privacy (2013), IEEE, pp. 526–540.

[3] ALFARDAN, N. J., BERNSTEIN, D. J., PATERSON, K. G.,
POETTERING, B., AND SCHULDT, J. C. On the security of RC4
in TLS. In 22nd USENIX Security Symposium (2013),
pp. 305–320.

[4] Amazon EC2. https://aws.amazon.com/ec2/.

[5] BARDOU, R., FOCARDI, R., KAWAMOTO, Y., SIMIONATO, L.,
STEEL, G., AND TSAY, J.-K. Efficient padding oracle attacks on
cryptographic hardware. In Advances in Cryptology–CRYPTO
2012. Springer, 2012, pp. 608–625.

[6] BEURDOUCHE, B., BHARGAVAN, K., DELIGNAT-LAVAUD, A.,
FOURNET, C., KOHLWEISS, M., PIRONTI, A., STRUB, P.-Y.,
AND ZINZINDOHOUE, J. K. A messy state of the union: Taming
the composite state machines of TLS. In IEEE Symposium on
Security and Privacy (2015).

[7] BHARGAVAN, K., LAVAUD, A. D., FOURNET, C., PIRONTI, A.,
AND STRUB, P. Y. Triple handshakes and cookie cutters:
Breaking and fixing authentication over TLS. In IEEE
Symposium on Security and Privacy (2014), IEEE, pp. 98–113.

[8] BHARGAVAN, K., AND LEURENT, G. Transcript collision
attacks: Breaking authentication in TLS, IKE, and SSH. In NDSS
(Feb. 2016).

[9] BLEICHENBACHER, D. Chosen ciphertext attacks against
protocols based on the RSA encryption standard PKCS #1. In
Advances in Cryptology — CRYPTO ’98, vol. 1462 of Lecture
Notes in Computer Science. Springer Berlin / Heidelberg, 1998.

[10] BREYHA, W., DURVAUX, D., DUSSA, T., KAPLAN, L. A.,
MENDEL, F., MOCK, C., KOSCHUCH, M., KRIEGISCH, A.,
PÖSCHL, U., SABET, R., SAN, B., SCHLATTERBECK, R.,
SCHRECK, T., WÜRSTLEIN, A., ZAUNER, A., AND ZAWODSKY,
P. Better crypto – applied crypto hardening, 2016. Available at
https://bettercrypto.org/static/applied-crypto-hardening.pdf.

[11] CHANG, W.-T., AND LANGLEY, A. QUIC crypto, 2014.
https://docs.google.com/document/d/1g5nIXAIkN_Y-
7XJW5K45IblHd_L2f5LTaDUDwvZ5L6g/edit?pli=1.

[12] CVE-2015-0293. https://cve.mitre.org/cgi-bin/
cvename.cgi?name=CVE-2015-0293.

[13] DE RUITER, J., AND POLL, E. Protocol state fuzzing of TLS
implementations. In 24th USENIX Security Symposium
(Washington, D.C., Aug. 2015), USENIX Association.

[14] DIERKS, T., AND RESCORLA, E. The Transport Layer Security
(TLS) Protocol Version 1.2. RFC 5246 (Proposed Standard), Aug.
2008. Updated by RFCs 5746, 5878.

[15] DUONG, T., AND RIZZO, J. Here come the xor ninjas.
Unpublished manuscript (2011), 4.

[16] DURUMERIC, Z., KASTEN, J., ADRIAN, D., HALDERMAN,
J. A., BAILEY, M., LI, F., WEAVER, N., AMANN, J.,
BEEKMAN, J., PAYER, M., AND PAXSON, V. The matter of
Heartbleed. In Proceedings of the 2014 Conference on Internet
Measurement Conference (New York, NY, USA, 2014), IMC ’14,
ACM, pp. 475–488.

[17] DURUMERIC, Z., WUSTROW, E., AND HALDERMAN, J. A.
ZMap: Fast Internet-wide scanning and its security applications.
In Proceedings of the 22nd USENIX Security Symposium (Aug.
2013).

[18] FLUHRER, S., MANTIN, I., AND SHAMIR, A. Selected Areas in
Cryptography: 8th Annual International Workshop, SAC 2001
Toronto, Ontario, Canada, August 16–17, 2001 Revised Papers.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2001,
ch. Weaknesses in the Key Scheduling Algorithm of RC4,
pp. 1–24.

[19] FREIER, A., KARLTON, P., AND KOCHER, P. The secure
sockets layer (SSL) protocol version 3.0. RFC 6101, 2011.

[20] HAMILTON, R. QUIC discovery.
https://docs.google.com/document/d/
1i4m7DbrWGgXafHxwl8SwIusY2ELUe8WX258xt2LFxPM/
edit#.

[21] Hashcat. http://hashcat.net.

[22] HICKMAN, K., AND ELGAMAL, T. The SSL protocol, 1995.
Available at
https://tools.ietf.org/html/draft-hickman-netscape-ssl-00.

[23] HOLZ, R., AMANN, J., MEHANI, O., WACHS, M., AND
KÂAFAR, M. A. TLS in the wild: an Internet-wide analysis of
TLS-based protocols for electronic communication. CoRR
abs/1511.00341 (2015).

[24] JAGER, T., PATERSON, K. G., AND SOMOROVSKY, J. One bad
apple: Backwards compatibility attacks on state-of-the-art
cryptography. In NDSS (2013).

[25] JAGER, T., SCHINZEL, S., AND SOMOROVSKY, J. Computer
Security – ESORICS 2012: 17th European Symposium on
Research in Computer Security, Pisa, Italy, September 10-12,
2012. Proceedings. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2012, ch. Bleichenbacher’s Attack Strikes again:
Breaking PKCS#1 v1.5 in XML Encryption, pp. 752–769.

[26] JAGER, T., SCHWENK, J., AND SOMOROVSKY, J. On the
security of TLS 1.3 and QUIC against weaknesses in PKCS#1
v1.5 encryption. In Proceedings of the 22nd ACM SIGSAC
Conference on Computer and Communications Security (New
York, NY, USA, 2015), CCS ’15, ACM, pp. 1185–1196.

[27] KALISKI, B. PKCS #1: RSA Encryption Version 1.5. RFC 2313
(Informational), Mar. 1998. Obsoleted by RFC 2437.

[28] KÄSPER, E. Fix reachable assert in SSLv2 servers. OpenSSL
patch, Mar. 2015. https://github.com/openssl/openssl/commit/
86f8fb0e344d62454f8daf3e15236b2b59210756.

[29] KLIMA, V., POKORNỲ, O., AND ROSA, T. Attacking
RSA-based sessions in SSL/TLS. In Cryptographic Hardware
and Embedded Systems-CHES 2003. Springer, 2003,
pp. 426–440.

[30] LANGLEY, A., MODADUGU, N., AND MOELLER, B. Transport
layer security (TLS) false start. draft-bmoeller-tls-falsestart-00,
June 2 (2010).

[31] LENSTRA, A. K., LENSTRA, H. W., AND LOVÁSZ, L.
Factoring polynomials with rational coefficients. Mathematische
Annalen 261 (1982), 515–534. 10.1007/BF01457454.

[32] MARTIN, D. Secure protocols in a hostile world. Bristol
Cryptography Blog, Sept. 2015. http://bristolcrypto.blogspot.co.il/
2015/09/secure-protocols-in-hostile-world.html.

16

https://aws.amazon.com/ec2/
https://bettercrypto.org/static/applied-crypto-hardening.pdf
https://docs.google.com/document/d/1g5nIXAIkN_Y-7XJW5K45IblHd_L2f5LTaDUDwvZ5L6g/edit?pli=1
https://docs.google.com/document/d/1g5nIXAIkN_Y-7XJW5K45IblHd_L2f5LTaDUDwvZ5L6g/edit?pli=1
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-0293
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-0293
https://docs.google.com/document/d/1i4m7DbrWGgXafHxwl8SwIusY2ELUe8WX258xt2LFxPM/edit#
https://docs.google.com/document/d/1i4m7DbrWGgXafHxwl8SwIusY2ELUe8WX258xt2LFxPM/edit#
https://docs.google.com/document/d/1i4m7DbrWGgXafHxwl8SwIusY2ELUe8WX258xt2LFxPM/edit#
http://hashcat.net
https://tools.ietf.org/html/draft-hickman-netscape-ssl-00
https://github.com/openssl/openssl/commit/86f8fb0e344d62454f8daf3e15236b2b59210756
https://github.com/openssl/openssl/commit/86f8fb0e344d62454f8daf3e15236b2b59210756
http://bristolcrypto.blogspot.co.il/2015/09/secure-protocols-in-hostile-world.html
http://bristolcrypto.blogspot.co.il/2015/09/secure-protocols-in-hostile-world.html

[33] MAVROGIANNOPOULOS, N., VERCAUTEREN, F., VELICHKOV,
V., AND PRENEEL, B. A cross-protocol attack on the TLS
protocol. In Proceedings of the 2012 ACM conference on
Computer and communications security (New York, NY, USA,
2012), CCS ’12, ACM, pp. 62–72.

[34] MAYER, W., ZAUNER, A., SCHMIEDECKER, M., AND HUBER,
M. No need for black chambers: Testing TLS in the e-mail
ecosystem at large. CoRR abs/1510.08646 (2015).

[35] MEYER, C., AND SCHWENK, J. SoK: Lessons learned from
SSL/TLS attacks. In Proceedings of the 14th International
Workshop on Information Security Applications (Berlin,
Heidelberg, Aug. 2013), WISA 2013, Springer-Verlag.

[36] MEYER, C., SOMOROVSKY, J., WEISS, E., SCHWENK, J.,
SCHINZEL, S., AND TEWS, E. Revisiting SSL/TLS
implementations: New Bleichenbacher side channels and attacks.
In 23rd USENIX Security Symposium. USENIX Association, San
Diego, CA, Aug. 2014, pp. 733–748.

[37] MÖLLER, B., DUONG, T., AND KOTOWICZ, K. This POODLE
bites: exploiting the SSL 3.0 fallback, 2014.

[38] OPENSSL. Change log.
https://www.openssl.org/news/changelog.html#x0.

[39] RESCORLA, E., ET AL. The transport layer security (TLS)
protocol version 1.3, draft.

[40] RISTIĆ, I. https://www.trustworthyinternet.org/ssl-pulse/.

[41] RIZZO, J., AND DUONG, T. The CRIME attack. EKOparty
Security Conference, 2012.

[42] ROSKIND, J. QUIC design document, 2013.
https://docs.google.com/a/chromium.org/document/d/
1RNHkx_VvKWyWg6Lr8SZ-saqsQx7rFV-ev2jRFUoVD34.

[43] STEUBE, J. Optimizing computation of hash-algorithms as an
attacker. In Passwords (Las Vegas, 2013).
http://hashcat.net/events/p13/js-ocohaaaa.pdf.

[44] STEVENS, M., SOTIROV, A., APPELBAUM, J., LENSTRA, A.,
MOLNAR, D., OSVIK, D. A., AND WEGER, B. Advances in
Cryptology - CRYPTO 2009: 29th Annual International
Cryptology Conference, Santa Barbara, CA, USA, August 16-20,
2009. Proceedings. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2009, ch. Short Chosen-Prefix Collisions for MD5
and the Creation of a Rogue CA Certificate, pp. 55–69.

[45] TURNER, S., AND POLK, T. Prohibiting secure sockets layer
(SSL) version 2.0. RFC 6176 (Informational), Apr. 2011.

[46] WAGNER, D., AND SCHNEIER, B. Analysis of the SSL 3.0
protocol. The Second USENIX Workshop on Electronic
Commerce Proceedings (1996).

[47] WANG, X., AND YU, H. How to break MD5 and other hash
functions. In Proceedings of the 24th Annual International
Conference on Theory and Applications of Cryptographic
Techniques (Berlin, Heidelberg, 2005), EUROCRYPT’05,
Springer-Verlag, pp. 19–35.

[48] YOO, A. B., JETTE, M. A., AND GRONDONA, M. Slurm:
Simple Linux utility for resource management. In Job Scheduling
Strategies for Parallel Processing (2003), Springer, pp. 44–60.

[49] ZHANG, Y., JUELS, A., REITER, M. K., AND RISTENPART, T.
Cross-tenant side-channel attacks in PaaS clouds. In Proceedings
of the 2014 ACM SIGSAC Conference on Computer and
Communications Security (New York, NY, USA, 2014), CCS ’14,
ACM, pp. 990–1003.

A Public key reuse
Reuse of RSA keys among different services was iden-
tified as a huge amplification to the number of services
vulnerable to DROWN. Table 5 describes the number
of reused RSA keys among different protocols. The two
clusters 110-143 and 993-995 stick out as they share the
majority of public keys. This is expected, as most of these
ports are served by the same IMAP/POP3 daemon. The
rest of the ports also share a substantial fraction of public
keys, usually between 21% and 87%. The numbers for
HTTPS (port 443) differ as there are four times as many
public keys in HTTPS as in the second largest protocol.

B Adaptations to Bleichenbacher’s attack
B.1 Calculating the success probability of a

fraction
For a given fraction u/t, we can compute the probability
of success with a randomly chosen TLS conformant ci-
phertext. Let m1 = m0 ·u/t = m1[1]||...||m1[`] - i.e. m1[i]
is the ith byte of m1. Let k be the fixed byte length of the
oracle response. For s = u/t mod N where u and t are
coprime, m1 will be SSLv2 conformant if the following
conditions all hold:

1. m0 is divisible by t. For randomly generated m0, this
condition holds with probability 1/t.

2. m1[1] = 0 and m1[2] = 2, or the integer m · u/t ∈
[2B,3B−1). For a randomly generated m0 divisible
by t and for a given fraction u/t, this condition holds
with probability

P =

3−2 · t/u for 2/3 < u/t < 1
3 · t/u−2 for 1 < u/t < 3/2
0 otherwise

3. ∀i ∈ [3, `− (k+1)],m1[i] 6= 0, or all bytes between
the first two bytes and the (k+ 1) least significant
bytes are non-zero. This condition holds with proba-
bility (1−1/256)`−(k+3).

4. m1[`− k] = 0, or the (k+1)st least significant byte
is 0. This condition holds with probability 1/256.

As an example, let us assume a 2048-bit RSA ciphertext
with k = 5, and consider the fraction u = 7, t = 8. We
have

P(t|m0) = 1/t = 1/8

P(m1[1,2] = 00||02
∣∣ t|m0) = 0.71

P(∀i ∈ [3, `−6]m1[i] 6= 0) = (1−1/256)248 = 0.37
P(m1[`−5] = 0) = 1/256

The overall probability of success is P = 1/8 ·0.71 ·0.37 ·
1/256 = 1/7,774; thus we expect to find an SSLv2 con-
formant ciphertext after testing 7,774 randomly chosen

17

https://www.openssl.org/news/changelog.html#x0
https://www.trustworthyinternet.org/ssl-pulse/
https://docs.google.com/a/chromium.org/document/d/1RNHkx_VvKWyWg6Lr8SZ-saqsQx7rFV-ev2jRFUoVD34
https://docs.google.com/a/chromium.org/document/d/1RNHkx_VvKWyWg6Lr8SZ-saqsQx7rFV-ev2jRFUoVD34
http://hashcat.net/events/p13/js-ocohaaaa.pdf

Port 25 (SMTP) 110 (POP3) 143 (IMAP) 443 (HTTPS) 465 (SMTPS) 587 (SMTP) 993 (IMAPS) 995 (POP3S)
25 1,115 (100%) 331 (32%) 318 (32%) 196 (4%) 403 (47%) 307 (48%) 369 (33%) 321 (32%)

110 331 (30%) 1,044 (100%) 795 (79%) 152 (3%) 337 (39%) 222 (35%) 819 (72%) 877 (87%)
143 318 (29%) 795 (76%) 1,003 (100%) 149 (3%) 321 (38%) 220 (35%) 878 (78%) 755 (75%)
443 196 (18%) 152 (15%) 149 (15%) 4,579 (100%) 129 (15%) 94 (15%) 175 (16%) 151 (15%)
465 403 (36%) 337 (32%) 321 (32%) 129 (3%) 857 (100%) 463 (73%) 396 (35%) 364 (36%)
587 307 (28%) 222 (21%) 220 (22%) 94 (2%) 463 (54%) 637 (100%) 259 (23%) 229 (23%)
993 369 (33%) 819 (78%) 878 (88%) 175 (4%) 396 (46%) 259 (41%) 1,131 (100%) 859 (85%)
995 321 (29%) 877 (84%) 755 (75%) 151 (3%) 364 (42%) 229 (36%) 859 (76%) 1,010 (100%)

Table 5: Impact of key reuse across ports. Number of shared public keys among two ports, in thousands. Each
column states what number and percentage of keys from the port in the header row are used on other ports. For example,
18% of keys used on port 25 are also used on port 443, but only 4% of keys used on port 443 are also used on port 25.

TLS conformant ciphertexts. We can decrease the number
of TLS conformant ciphertexts needed by multiplying
each candidate ciphertext by several fractions.

B.2 Optimizing the chosen set of fractions
In order to deduce the validity of a single ciphertext, the
attacker would have to perform a non-trivial brute-force
search over all 5 byte master_key values. This translates
into 240 encryption operations.

The search space can be reduced by an additional opti-
mization, which relies on the fractional multipliers used
in the first step. Suppose the attacker uses a fraction
u/t = 8/7 to compute a new SSLv2 conformant candidate,
and suppose that m0 is indeed divisible by t = 7. This
implies that the new candidate message m1 = m0/t ·u is
divisible by u = 8, and the last three bits of m1 (and thus
mksecret) are zero. This allows the attacker to reduce the
searched master_key space by selecting specific frac-
tions.

More generally, for an integer u, the largest power
of 2 by which u is divisible, is denoted by v2(u), and
multiplying by a fraction u/t saves us a factor of v2(u) in
the required encryption attempts. With this observation,
the trade-off between the 3 metrics: the required number
of intercepted ciphertexts, the required number of queries,
and the required number of encryption attempts, becomes
non-trivial to analyze.

Therefore, we have resorted to using simulations when
evaluating the performance metrics for sets of fractions.
The probability that multiplying a ciphertext by any frac-
tion out of a given set of fractions results in an SSLv2
conformant message is difficult to compute, since the
events are in fact inter-dependent: If m · 16/15 is con-
forming, then m is divisible by 5, greatly increasing the
probability that m ·4/5 is also conforming. However, it is
easy to perform a Monte Carlo simulation, where we ran-
domly generate ciphertexts, and measure the probability
that any fraction out of a given set produces a conforming
message. The expected required number of intercepted
ciphertexts is the inverse of that probability.

Formally, if we denote the set of fractions as F , and

the event that a message m is conforming as C(m), we
perform a Monte Carlo estimation of the probability PF =
P(∃ f ∈F :C(m · f)), and the expected number of required
intercepted ciphertexts equals 1/PF .

The required number of oracle queries is simply 1/PF ·
|F |: For each ciphertext, we need to query the oracle
with each fraction. Accordingly, the required number con-
nections to the server is 2 ·1/PF · |F |, since as explained
earlier each logical query consists of two connections to
the server.

And as for the required number of encryption attempts,
if we denote this number when querying with a given
fraction f = u/t as E f , then E f = Eu/t = 240−v2(u). If we
further define the required encryption attempts when test-
ing a single ciphertext with each fraction from a given set
of fraction F as EF = ∑ f∈F E f then the required number
of encryption attempts throughout the attack for a given
set of fractions is (1/PF) ·EF .

Using this approach, we can now give precise figures
for the expected number of required intercepted cipher-
texts, connections to the targeted server, and encryption
attempts. The results presented in Table 1 were obtained
by using the monte-carlo estimation technique described
above, with one billion random ciphertexts per tested
fraction set F .

B.3 Efficiently computing rotations and multi-
pliers

For a randomly chosen s, the probability that the two
most significant bytes are 0x00 02 is 2−16; for a 2028-bit
modulus N the probability that the next `− k− 3 bytes
of m2 are all nonzero is about 0.37 as in the previous
section, and the probability that the k+1 least significant
delimiter byte is 0x00 is 1/256. Thus a randomly chosen
s will work with probability 2−25.4 and we expect to need
to try 225.4 values of s before succeeding.

However, since we have already learned k+3 most sig-
nificant bytes of m1 ·R−1 mod N, for k ≥ 4 and s < 230

we do not need to query the oracle to learn if the two
most significant bytes are SSLv2 conformant; we can
compute this ourselves from our knowledge of m̃1 ·R−1.

18

We could simply iterate through values of s, test that
the top two bytes of m̃1 · R−1 mod N are SSLv2 con-
formant, and only query the oracle O for values of s
that satisfy this test; this means that for our 2048-bit
modulus we expect to test 216 values offline per oracle
query. The probability that our query is conformant is
then P = (1/256)∗ (255/256)249 ≈ 1/678 so we expect
to perform 678 oracle queries before finding a fully SSLv2
conformant ciphertext c2 = (s ·R−1)ec1 mod N.

We can speed up the brute force testing of 216 values
of s using algebraic lattices. We are searching for values
of s satisfying m̃1R−1s < 3B mod N, or given an offset
s0 we would like to find solutions x and z to the equation
m̃1R−1(s0+x) = 2B+z mod N where |x|< 216 and |z|<
B. Let X = 215. We can construct the lattice basis

L =

−B Xm̃1R−1 m̃1R−1s0 +B
0 XN 0
0 0 N

We then run the LLL algorithm [31] on L to obtain a
reduced lattice basis V containing vectors v1,v2,v3. We
then construct the linear equations f1(x,z) = v1,1/B · z+
v1,2/X · x + v1,3 = 0 and f2(x,z) = v2,1/B · z + v2,2/X ·
x+ v2,3 = 0 and solve the system of equations to find a
candidate integer solution x = s̃. We then test s = s̃+ s0
as our candidate solution in this range.

detL = XZN2 and dimL = 3, thus we expect the
vectors vi in V to have length approximately |vi| ≈
(XZN2)1/3. We will succeed if |vi|< N, or in other words
XZ < N. N ≈ 28`, so we expect to find short enough
vectors. This approach works well in practice and is sig-
nificantly faster than iterating through 216 possible values
of s̃ for each query.

In summary, given an SSLv2 conformant ciphertext
c1 = me

1 mod N, we can efficiently generate an SSLv2
conformant ciphertext c2 = me

2 mod N where m2 = s ·
m1 ·R−1 mod N and we know several most significant
bytes of m2, using only a few hundred oracle queries in
expectation. We can iterate this process as many times as
we like to continue generating SSLv2 conformant cipher-
texts ci for which we know increasing numbers of most
significant bytes, and which have a known multiplicative
relationship to our original message c0.

B.4 Rotations in the general DROWN attack
After the first phase, we have learned an SSLv2 confor-
mant ciphertext c1, and we wish to shift known plaintext
bytes from least to most significant bits. Since we learn
the least significant 6 bytes of plaintext of m1 from a suc-
cessful oracle OSSLv2-export query, we could use a shift of
2−48 to transfer 48 bits of known plaintext to the most
significant bits of a new ciphertext. However, we perform
a slight optimization here, to reduce the number of en-
cryption attempts. We instead use a shift of 2−40, so that
the least significant byte of m1 · 2−40 and m̃1 · 2−40 will

be known. This means that we can compute the least sig-
nificant byte of m1 ·2−40 · s mod N, so oracle queries now
only require 232 encryption attempts each. This brings
the total expected number of encryption attempts for this
phase to 232 ∗678≈ 241.

We perform two such plaintext shifts in order to ob-
tain an SSLv2 conformant message, m3 that resides in a
narrow interval of length at most 28`−66. Then we can
then obtain a multiplier s3 such that m3 · s3 is also SSLv2
conformant. Since m3 lies in an interval of length is at
most 28`−66, with high probability for any s3 < 230, m3 ·s3
lies in an interval whose length is at most 28`−36 < B, so
we know the two most significant bytes of m3 · s3. Fur-
thermore, we know the exact value of the 6 least signifi-
cant bytes even after multiplication. So we test possible
values of s3, and for values such that m3 · s3 starts with
the required 00 02 bytes, and the 6th least significant
byte is zero, we query the oracle as to the validity of
c3 ·se

3 mod N. The only condition for PKCS conformance
which we haven’t verified before querying the oracle is

∀i ∈ [3, `−6],(m3 · s3)[i] 6= 0

which holds with probability 0.37. So after roughly
1/0.37 = 2.72 queries, we expect to get a positive an-
swer from the oracle.

Since we know the value of the 6 least significant bytes
after multiplication, there’s no component of breaking a
symmetric cipher here - if the message is SSLv2 confor-
mant after multiplication, we know the symmetric key,
and can test whether it fits the received ServerVerify
message.

B.5 General DROWN Bleichenbacher itera-
tions

After we have bootstrapped the attack using rotations„ the
original algorithm proposed by Bleichenbacher can be
applied with minimal modifications.

The original step obtains a message that starts with the
required 00 02 bytes once in roughly every two queries on
average, and requires the number of queries to be roughly
double the number of bits in the RSA modulus. Since
we know the value of the 6 least significant bytes after
multiplying by any integer, we can only query the oracle
for multipliers that cause the 6th least significant byte
to be zero, and we don’t need to break a symmetric key
since we know the value of the 5 least significant bytes.
However, we cannot ensure that the padding is non-zero
when querying—we simply hope that is the case, which
as usual happens with probability 0.37.

Therefore, for a 2048-bit modulus, the overall ex-
pected number of queries for this phase is roughly
2048∗2/0.37 = 11,000. This is indeed the average num-
ber of queries we require in practice when running our
implementation of the attack.

19

B.6 General DROWN attack performance
For a given set of fractions, F , the required number of
recorded client connections A is a random variable dis-
tributed geometrically with a success probability P = PF .
For typical fraction sets, 1/13,000 < PF < 1/600. The
required number of Bleichenbacher queries against the
target server during the first step of the attack is a random
variable, B, such that B = |F | ·A. As each query consists
of two separate connections to the target server, the re-
quired number of connections is always twice the number
of queries. And last, the required keys to be tested overall
is another random variable C = kF ·B;kF ≈ 240.

Summing the figures from the different phases for a
2048-bit RSA modulus, the attack requires in expectation
13,838+1,393+1,393+6+22,140 = 38,770 connec-
tions to the target server, when optimizing for the number
of queries in phase 1. Each oracle query requires two
connections to the server.

Re-calculating the numbers for a 1024 bit modulus,
the primary element that needs to change is P1 = P(∀i ∈
[3, `− 6] : mi 6= 0) = (1− 1/256)120 = 0.62, which ap-
pears in phases 1, 2, 3 and 5. For phase 5, the number of
queries is now in expectation 1024∗2/0.62 = 3,303. The
total expected number of server connections is therefore
8,258+ 826+ 826+ 6+ 6,606 = 16,522, again when
optimizing for the number of queries in phase 1.

Similarly, re-calculating the numbers for a 4096 bit
modulus, P1 = (1−1/256)504 = 0.14, and the number of
queries in phase 5 is now roughly 4096∗2/0.14= 58,514.
The algorithm for phase 5 can be further optimized if
that is the case of interest; we omit these optimiza-
tions for space reasons. Again, summing up yields
36,571+ 3,657+ 3,657+ 29+ 117,028 = 160,942 re-
quired connections to the server.

B.7 Special DROWN attack performance
In the first step, we can use the same fraction analysis as
before. The probability that the three padding bytes are
correct remains unchanged. The probability that all the in-
termediate padding bytes are non-zero is now slightly
higher, P1 = (1− 1/256)229 = 0.41, yielding an over-
all maximal success probability P = 0.1 · 0.41 · 1

256 =
1/6,244 per oracle query. Since we now only need to
connect to the server once per oracle query, the expected
number of connections in this step is the same, 6,243.
Phase 1 now yields a message with 3 known padding
bytes and 24 known plaintext bytes.

For the remaining rotation steps, each rotation requires
an expected 630 oracle queries. The attacker at this point
could directly complete the original Bleichenbacher at-
tack by performing 11,000 sequential queries in the fi-
nal phase. However, with this more powerful oracle it
is more efficient for the attacker to apply a rotation 10
more times to recover the remaining bits of the plain-

text. The number of queries required in this phase is now
10 ·256/0.41≈ 6,300, and the queries for each of the 10
steps can be executed in parallel.

Using multiple queries per fraction. For the
OSSLv2-extra-clear oracle, the attacker can increase
his chances of success by querying the server multiple
times per ciphertext and fraction, using different cipher
suites with different key lengths. He can query DES
and hope the 9th least significant byte is zero, then
negotiate 128-bit RC4 and hope the 17th least significant
byte is zero, then negotiate 3DES and hope the 25th
least significant is zero. All three queries also require
the intermediate padding bytes to be non-zero. This
technique triples the success probability for a given
pair of (ciphertext, fraction), at a cost of triple the
queries. Its primary benefit is that fractions with smaller
denominators (and thus higher probabilities of success)
are now even more likely to succeed.

For a random ciphertext, when choosing 70 fractions,
the probability of the first zero delimiter byte being in
one of these three positions is 0.01. Hence, the attacker
can use only 100 recorded ciphertexts, and expect to use
100∗70∗3 = 21,000 oracle queries. For the extra clear
oracle, each query requires one SSLv2 connection to the
server. After obtaining the first positive response from the
oracle, the attacker proceeds to phase 2 using 3DES.

C Highly optimized GPU implementation
The most computationally expensive part of our general
DROWN attack is breaking the 40-bit symmetric key.
We wanted to find the platform that would have the best
tradeoff of cost and speed for the attack, so we performed
some preliminary experiments comparing performance
of symmetric key breaking on CPUs, GPUs, and FPGAs.
These experiments used a naïve version of the attack using
the OpenSSL implementation of MD5 and RC2.

The CPU machine contained four Intel Xeon E7-4820
CPUs with a total of 32 cores (64 concurrent threads).
The GPU system was equipped with a ZOTAC GeForce
GTX TITAN and an Intel Xeon E5-1620 host CPU. The
FPGA setup consisted of 64 Spartan-6 LX150 FPGAs.

We benchmarked the performance of the CPU and GPU
implementations over a large corpus of randomly gener-
ated keys, and then extrapolated to the full attack. For
the FPGAs, we tested the functionality in simulation and
estimated the actual runtime by theoretically filling the
FPGA up to 90% with the design, including communica-
tion. Table 6 compares the three platforms.

While the FPGA implementation was the fastest in our
test setup, the speed-to-cost ratio of GPUs was the most
promising. Therefore, we decided to focus on optimizing
the attack on the GPU platform. We developed several
optimizations:

20

Platform Hardware Cost Full attack Cost to perform attack in 1 day

Naïve CPU 4 Intel Xeon E7-4820 $21,400 114 days $2,440,000
Naïve GPU ZOTAC GeForce GTX TITAN $2,400 189 days $450,000
Naïve FPGA 64 Spartan-6 LX150 $60,000 51.5 days $3,090,000

Optimized Hashcat NVIDIA GTX / AMD R9 $18,040 0.75 days $13,500
Optimized EC2 NVIDIA $440 0.33 days $147

Table 6: Time and cost efficiency of our attack on different hardware platforms. The brute force attacks against
symmetric export keys are the most expensive part of our attack. We compared the performance of a naïve implemen-
tation of our attack on different platforms, and decided that a GPU implementation held the most promise. We then
heavily optimized our GPU implementation, obtaining several orders of magnitude in speedup.

Generating key candidates on GPUs. Our naïve im-
plementation generated key candidates on the CPUs. For
each hash computation, a key candidate was transmitted
to the GPU, and the GPU responded with the key validity.
The bottleneck in this approach was the PCI-E Bus. Even
newer boards with PCI-E 3.0 or even PCI-E 4.0 are too
slow to handle the large amount of data required to keep
the GPUs busy. We solved this problem by generating the
key candidates directly on the GPUs.

Generating memory blocks of keys. Our hash compu-
tation kernel had to access different candidate keys from
the GPU memory. Accessing global memory is typically
a slow operation and we needed to keep memory access as
minimal as possible. Ideally we would be able to access
the candidate keys on a register level or from a constant
memory block, which is almost as fast as a register. How-
ever, there are not enough registers or constant memory
available to store all the key values.

We decided to divide each key value into two parts
kH and kL, where |kH | = 1 byte and |kL| = 4 bytes. We
stored all possible 28 kH values in the constant read-only
memory, and all possible 232 kL values in the global mem-
ory. Next we used an in-kernel loop. We loaded the latter
4 bytes from the slow global memory and stored it in
registers. Inside the inner loop we iterated through our
first byte kH by accessing the fast constant memory. The
resulting key candidate was computed as k = kH ||kL.

Using 32-bit data types. Although modern GPUs sup-
port several data types ranging in size from 8 to 64 bits,
many instructions are designed for 32-bit data types. This
fits the design of MD5 perfectly, because it uses 32-bit
data types. RC2, however, uses both 8-bit and 16-bit data
types, which are not suitable for 32-bit instruction sets.
This forced us to rewrite the original RC2 algorithm to
use 32-bit instructions.

Avoiding loop branches. Our kernel has to concate-
nate several inputs to generate the server_write_key
needed for the encryption as described in Section 2.2.
Using loops to move this data generates branches be-
cause there is always an if() inside a for() loop. To avoid

these branches, which always slow down a GPU imple-
mentation, we manually shifted the input bytes into the
32-bit registers for MD5. This was possible since the hash
computation inputs, (mkclear||mksecret ||“0”||rc||rs), have
constant length.

Optimizing MD5 computation. Our MD5 inputs have
known input length and block structure, allowing us to
use the so-called zero-based optimizations. Given the
known input length (49 bytes) and the fact that MD5 uses
zero padding, in our case the MD5 input block included
four 0x00 bytes. These 0x00 bytes are read four times per
MD5 computation which allowed us to drop in total 16
ADD operations per MD5 computation. In addition, we
applied the Initial-step optimizations used in the Hashcat
implementation [43].

Skipping the second encryption block. The input of
the brute-force computation is a 16-byte client challenge
rc and the resulting ciphertext from the ServerVerify
message which is computed with an RC2 cipher. As RC2
is an 8-byte block cipher the RC2 input is split into two
blocks and two RC2 encryptions are performed. In our
verification algorithm, we skipped the second decryption
step as soon as we saw the key candidate does not de-
crypt the first plaintext block correctly. This resulted in a
speedup of about a factor of 1.5.

RC2 permutation table in constant memory. The
RC2 algorithm uses a 256-byte permutation table which
is constant for all RC2 computations. Hence, this table
is a good candidate to be put into the constant memory,
which is nearly as fast as registers and makes it easy to
address the table elements. When finally using the values,
we copied them into the even faster shared memory. Al-
though this copy operation has to be repeated, it still led
to a speed up of approximately a factor of 2.

RC2 key setup without keysize checks. The key used
for RC2 encryption is generated using MD5, thus the key
size is always 128 bits. Therefore, we do not have to
check for the input key size, and can simply skip the size
verification branch completely.

21

D Amazon EC2 evaluation
Amazon EC2 billing is based on the instance-hour. An
instance represents a single virtualized machine and its as-
sociated cores, memory, and storage. For our experiments
we used g2 instances, which are equipped with high-
performance NVIDIA GPUs, each with 1,536 CUDA
cores. The two available models for this instance type are
the g2.2xlarge and the g2.8xlarge, containing one
and four GPUs, respectively.

It is possible to request instances at a fixed on-demand
rate, or bid on instances at the discounted spot instance
rate. Spot instances may be terminated depending on
demand, but the savings in cost are significant compared
to the on-demand rate. When we ran our experiments in
January 2016, the on-demand rate for the g2.2xlarge
model was $0.65/hr and the rate for the g2.8xlarge
model was $2.65/hr, while the average spot rates we paid
were $0.09/hr and $0.83/hr respectively.

We used a cluster composed of 200 spot instances:
150 g2.2xlarge which contain one GPU and 50
g2.8xlarge, each containing four GPUs, spread across
multiple availability zones within the US-East region.
This distribution was determined by price: we were not
able to launch more than 50 g2.8xlarge instances with-
out a sharp spike in spot prices. We used the optimized
Hashcat implementation on the same workload of key re-
quests as the experiments run on the Hashcat servers. We
used Slurm [48] to distribute jobs across compute nodes.

The GPU breaking experiment completed successfully,
with two minor caveats. First, the 150 g2.2xlarge nodes
completed their workloads at the 6h26m mark, while
the other 50 g2.8xlarge nodes did not finish until the
7h41m mark. More careful job distribution would ensure
that all nodes completed at approximately the same time,
reducing the overall runtime. Second, in this particular

run, 7.2% of the jobs that we expected to complete were
terminated early due to overheating GPUs. The attack
was successful despite the failed jobs, so we did not rerun
them. In a more carefully engineered implementation, the
unfinished jobs could have been reallocated to the unused
GPU capacity without increasing the overall runtime.

The total cost of the experiment was $440, and termi-
nated in under 8 hours including startup and shutdown.

E A brief history of obsolete cryptography
A flaw was first observed in the MD5 hash function in
1996; the first collision was discovered in 2004 [47], but
MD5 was still in use by certificate authorities in 2009
when Stevens et al. [44] used a chosen-prefix MD5 attack
to construct a malicious TLS certificate with a valid CA
signature. The RC4 stream cipher was observed to be
biased as early as 1995 and shown to be catastrophically
broken in the context of WEP in 2001 [18]; it was used by
about 50% of TLS connections in 2013 when AlFardan
et al. demonstrated near-practical attacks against RC4 in
TLS [3]. TLSv1.0 was standardized in 1998 to replace
SSLv3; before the POODLE attack [37] was shown to
render all SSLv3 block cipher suites insecure in 2014,
support for SSLv3 was near 100% for popular HTTPS
sites, and most clients were vulnerable to a downgrade at-
tack from TLS to SSLv3 [40]. Export-grade cipher suites
for TLS have been obsolete since 2000, when the United
States relaxed restrictions on commercial and open source
software; before the FREAK attack [6] demonstrated
widespread implementation flaws allowing a catastrophic
downgrade attack exploiting export RSA, 37% of HTTPS
sites with browser-trusted certificates supported export-
grade RSA. Three months later the Logjam attack [1]
demonstrated a TLS protocol flaw downgrade attack ex-
ploiting export Diffie-Hellman; 8.4% of the Alexa top
million sites were vulnerable at the time.

22

	Introduction
	Background
	PKCS#1 v1.5 encryption padding
	SSL and TLS
	OpenSSL SSLv2 cipher suite selection bug
	Bleichenbacher's attack

	Breaking TLS with SSLv2
	Attack scenario
	A generic SSLv2 oracle
	DROWN attack template
	Finding an SSLv2 conformant ciphertext
	Shifting known plaintext bytes
	Adapted Bleichenbacher iteration

	General DROWN
	The SSLv2 export padding oracle
	TLS decryption attack
	Attack scenario
	Constructing the attack
	Attack performance

	Implementing general DROWN with GPUs

	Special DROWN
	The OpenSSL ``extra clear'' oracle
	TLS decryption with special DROWN
	Attack scenario
	Constructing the attack

	MITM attack against TLS

	Measurements
	Signature forgery attacks and QUIC
	Extending the attack to QUIC
	SSLv2 servers with CA certificates

	Related work
	Discussion
	Lessons for protocol design
	Implications for modern protocols
	Lessons for key reuse
	Harms from obsolete cryptography
	Harms from deliberately weakening cryptography

	Public key reuse
	Adaptations to Bleichenbacher's attack
	Calculating the success probability of a fraction
	Optimizing the chosen set of fractions
	Efficiently computing rotations and multipliers
	Rotations in the general DROWN attack
	General DROWN Bleichenbacher iterations
	General DROWN attack performance
	Special DROWN attack performance

	Highly optimized GPU implementation
	Amazon EC2 evaluation
	A brief history of obsolete cryptography

