
Proceedings of the 25th USENIX Security Symposium, August 2016 https://drownattack.com

DROWN: Breaking TLS using SSLv2

Nimrod Aviram1, Sebastian Schinzel2, Juraj Somorovsky3, Nadia Heninger4, Maik Dankel2,
Jens Steube5, Luke Valenta4, David Adrian6, J. Alex Halderman6, Viktor Dukhovni7,

Emilia Käsper8, Shaanan Cohney4, Susanne Engels3, Christof Paar3 and Yuval Shavitt1

1Department of Electrical Engineering, Tel Aviv University
2Münster University of Applied Sciences

3Horst Görtz Institute for IT Security, Ruhr University Bochum
4University of Pennsylvania

5Hashcat Project
6University of Michigan
7Two Sigma/OpenSSL

8Google/OpenSSL

Abstract
We present DROWN, a novel cross-protocol attack on
TLS that uses a server supporting SSLv2 as an oracle to
decrypt modern TLS connections.

We introduce two versions of the attack. The more
general form exploits multiple unnoticed protocol flaws
in SSLv2 to develop a new and stronger variant of the
Bleichenbacher RSA padding-oracle attack. To decrypt a
2048-bit RSA TLS ciphertext, an attacker must observe
1,000 TLS handshakes, initiate 40,000 SSLv2 connec-
tions, and perform 250 offline work. The victim client
never initiates SSLv2 connections. We implemented the
attack and can decrypt a TLS 1.2 handshake using 2048-
bit RSA in under 8 hours, at a cost of $440 on Amazon
EC2. Using Internet-wide scans, we find that 33% of all
HTTPS servers and 22% of those with browser-trusted
certificates are vulnerable to this protocol-level attack due
to widespread key and certificate reuse.

For an even cheaper attack, we apply our new tech-
niques together with a newly discovered vulnerability in
OpenSSL that was present in releases from 1998 to early
2015. Given an unpatched SSLv2 server to use as an
oracle, we can decrypt a TLS ciphertext in one minute on
a single CPU—fast enough to enable man-in-the-middle
attacks against modern browsers. We find that 26% of
HTTPS servers are vulnerable to this attack.

We further observe that the QUIC protocol is vulner-
able to a variant of our attack that allows an attacker to
impersonate a server indefinitely after performing as few
as 217 SSLv2 connections and 258 offline work.

We conclude that SSLv2 is not only weak, but actively
harmful to the TLS ecosystem.

1 Introduction
TLS [13] is one of the main protocols responsible for
transport security on the modern Internet. TLS and its
precursor SSLv3 have been the target of a large number
of cryptographic attacks in the research community, both
on popular implementations and the protocol itself [33].
Prominent recent examples include attacks on outdated
or deliberately weakened encryption in RC4 [3], RSA [5],
and Diffie-Hellman [1], different side channels includ-
ing Lucky13 [2], BEAST [14], and POODLE [35], and
several attacks on invalid TLS protocol flows [5, 6, 12].

Comparatively little attention has been paid to the
SSLv2 protocol, likely because the known attacks are
so devastating and the protocol has long been considered
obsolete. Wagner and Schneier wrote in 1996 that their at-
tacks on SSLv2 “will be irrelevant in the long term when
servers stop accepting SSL 2.0 connections” [41]. Most
modern TLS clients do not support SSLv2 at all. Yet in
2016, our Internet-wide scans find that out of 36 million
HTTPS servers, 6 million (17%) support SSLv2.

A Bleichenbacher attack on SSLv2. Bleichenbacher’s
padding oracle attack [8] is an adaptive chosen ciphertext
attack against PKCS#1 v1.5, the RSA padding standard
used in SSL and TLS. It enables decryption of RSA
ciphertexts if a server distinguishes between correctly and
incorrectly padded RSA plaintexts, and was termed the
“million-message attack” upon its introduction in 1998,
after the number of decryption queries needed to deduce
a plaintext. All widely used SSL/TLS servers include
countermeasures against Bleichenbacher attacks.

Our first result shows that the SSLv2 protocol is fatally
vulnerable to a form of Bleichenbacher attack that enables

https://drownattack.com

decryption of RSA ciphertexts. We develop a novel ap-
plication of the attack that allows us to use a server that
supports SSLv2 as an efficient padding oracle. This attack
is a protocol-level flaw in SSLv2 that results in a feasible
attack for 40-bit export cipher strengths, and in fact abuses
the universally implemented countermeasures against Ble-
ichenbacher attacks to obtain a decryption oracle.

We also discovered multiple implementation flaws in
commonly deployed OpenSSL versions that allow an ex-
tremely efficient instantiation of this attack.

Using SSLv2 to break TLS. Second, we present a novel
cross-protocol attack that allows an attacker to break a
passively collected RSA key exchange for any TLS server
if the RSA keys are also used for SSLv2, possibly on a
different server. We call this attack DROWN (Decrypting
RSA using Obsolete and Weakened eNcryption).

In its general version, the attack exploits the protocol
flaws in SSLv2, does not rely on any particular library
implementation, and is feasible to carry out in practice by
taking advantage of commonly supported export-grade
ciphers. In order to decrypt one TLS session, the attacker
must passively capture about 1,000 TLS sessions using
RSA key exchange, make 40,000 SSLv2 connections to
the victim server, and perform 250 symmetric encryption
operations. We successfully carried out this attack using
an optimized GPU implementation and were able to de-
crypt a 2048-bit RSA ciphertext in less than 18 hours on
a GPU cluster and less than 8 hours using Amazon EC2.

We found that 11.5 million HTTPS servers (33%) are
vulnerable to this attack, because many HTTPS servers
that do not directly support SSLv2 share RSA keys with
other services that do. Of servers offering HTTPS with
browser-trusted certificates, 22% are vulnerable.

We also present a special version of DROWN that ex-
ploits flaws in OpenSSL for a more efficient oracle. It re-
quires roughly the same number of captured TLS sessions
as the general attack, but only half as many connections to
the victim server and no large computations. This attack
can be completed on a single core on commodity hard-
ware in less than a minute, and is limited primarily by how
fast the server can complete handshakes. It is fast enough
that an attacker can perform man-in-the-middle attacks
on live TLS sessions before the handshake times out, and
downgrade a modern TLS client to RSA key exchange
with a server that prefers non-RSA cipher suites. Our
Internet-wide scans suggest that 79% of HTTPS servers
that are vulnerable to the general attack, or 26% of all
HTTPS servers, are also vulnerable to real-time attacks
exploiting these implementation flaws.

Our results highlight the risk that continued support
for SSLv2 imposes on the security of much more recent
TLS versions. This is an instance of a more general
phenomenon of insufficient domain separation, where
older, vulnerable security standards can open the door to

attacks on newer versions. We conclude that phasing out
outdated and insecure standards should become a priority
for standards designers and practitioners.

Disclosure. DROWN was assigned CVE-2016-0800.
We disclosed our attacks to OpenSSL and worked with
them to coordinate further disclosures. The specific
OpenSSL vulnerabilities we discovered have been desig-
nated CVE-2015-3197, CVE-2016-0703, and CVE-2016-
0704. In response to our findings, OpenSSL has made
it impossible to configure a TLS server in such a way
that it is vulnerable to DROWN. Microsoft had already
disabled SSLv2 for all supported versions of IIS. We
also disclosed the attack to the NSS developers, who have
disabled SSLv2 on the last NSS tool that supported it and
have hastened efforts to entirely remove the protocol from
their codebase. In response to our disclosure, Google
will disable QUIC support for non-whitelisted servers and
modify the QUIC standard. We also notified IBM, Cisco,
Amazon, the German CERT-Bund, and the Israeli CERT.

Online resources. Contact information, server test tools,
and updates are available at https://drownattack.com.

2 Background
In the following, a||b denotes concatenation of strings a
and b. a[i] references the i-th byte in a. (N,e) denotes an
RSA public key, where N has byte-length `m (|N|= `m)
and e is the public exponent. The corresponding secret
exponent is d = 1/e mod φ(N).

2.1 PKCS#1 v1.5 encryption padding
Our attacks rely on the structure of RSA PKCS#1 v1.5
padding. Although RSA PKCS#1 v2.0 implements OAEP,
SSL/TLS still uses PKCS#1 v1.5. The PKCS#1 v1.5
encryption padding scheme [27] randomizes encryptions
by prepending a random padding string PS to a message
k (here, a symmetric session key) before RSA encryption:

1. The plaintext message is k, `k = |k|. The
encrypter generates a random byte string PS,
where |PS| ≥ 8, |PS| = `m − 3− `k, and 0x00 6∈
{PS[1], . . . ,PS[|PS|]}.

2. The encryption block is m = 00||02||PS||00||k.

3. The ciphertext is computed as c = me mod N.

To decrypt such a ciphertext, the decrypter first com-
putes m = cd mod N. Then it checks whether the de-
crypted message m is correctly formatted as a PKCS#1
v1.5-encoded message. We say that the ciphertext c
and the decrypted message bytes m[1]||m[2]||...||m[`m]
are PKCS#1 v1.5 conformant if:

m[1]||m[2] = 0x00||0x02
0x00 6∈ {m[3], . . . ,m[10]}

If this condition holds, the decrypter searches for the first

2

SSLv2
Client

SSLv2
Client

SSLv2
Server
SSLv2
Server

ClientHello:
cs

C
, r

C

ClientMasterKey: cs,
mk

clear
, enc

pk
(mk

secret
)

(Client-) Finished

ServerVerify

(Server-) Finished

master_key = mk
clear

 || mk
secret

ServerHello:
cert, cs

S
, r

S

Figure 1: SSLv2 handshake. The server responds with a
ServerVerify message directly after receiving an RSA-
PKCS#1 v1.5 ciphertext contained in ClientMasterKey.
This protocol feature enables our attack.

value i > 10 such that m[i] = 0x00. Then, it extracts k =
m[i+1]|| . . . ||m[`m]. Otherwise, the ciphertext is rejected.

In SSLv3 and TLS, RSA PKCS#1 v1.5 is used to en-
capsulate the premaster secret exchanged during the hand-
shake [13]. Thus, k is interpreted as the premaster secret.
In SSLv2, RSA PKCS#1 v1.5 is used for encapsulation
of an equivalent key denoted the master_key.

2.2 SSL and TLS
The first incarnation of the TLS protocol was the SSL
(Secure Socket Layer) protocol, which was designed by
Netscape in the 90s. The first two versions of SSL were
immediately found to be vulnerable to trivial attacks [40,
41] which were fixed in SSLv3 [17]. Later versions of the
standard were renamed TLS, and share a similar structure
to SSLv3. The current version of the protocol is TLS 1.2;
TLS 1.3 is currently under development.

An SSL/TLS protocol flow consists of two phases:
handshake and application data exchange. In the first
phase, the communicating parties agree on cryptographic
algorithms and establish shared keys. In the second phase,
these keys are used to protect the confidentiality and au-
thenticity of the transmitted application data.

The handshake protocol was fundamentally redesigned
in the SSLv3 version. This new handshake protocol was
then used in later TLS versions up to TLS 1.2. In the fol-
lowing, we describe the RSA-based handshake protocols
used in TLS and SSLv2, and highlight their differences.

The SSLv2 handshake protocol. The SSLv2 protocol
description [22] is less formally specified than modern
RFCs. Figure 1 depicts an SSLv2 handshake. A client
initiates an SSLv2 handshake by sending a ClientHello
message, which includes a list of cipher suites csc

supported by the client and a client nonce rc, termed
challenge. The server responds with a ServerHello
message, which contains a list of cipher suites css sup-
ported by the server, the server certificate, and a server
nonce rs, termed connection_ID.

The client responds with a ClientMasterKey mes-
sage, which specifies a cipher suite supported by both
peers and key data used for constructing a master_key.
In order to support export cipher suites with 40-bit se-
curity (e.g., SSL_RC2_128_CBC_EXPORT40_WITH_MD5),
the key data is divided into two parts:

• mkclear: A portion of the master_key sent in the
ClientMasterKey message as plaintext (termed
clear_key_data in the SSLv2 standard).

• mksecret : A secret portion of the master_key,
encrypted with RSA PKCS#1 v1.5 (termed
secret_key_data).

The resulting master_key mk is constructed by concate-
nating these two keys: mk = mkclear||mksecret . For 40-bit
export cipher suites, mksecret is five bytes in length. For
non-export cipher suites, the whole master_key is en-
crypted, and the length of mkclear is zero.

The client and server can then compute session keys
from the reconstructed master_key mk:

server_write_key= MD5(mk||“0”||rc||rs)
client_write_key= MD5(mk||“1”||rc||rs)

The server responds with a ServerVerify mes-
sage consisting of the challenge rc encrypted with
the server_write_key. Both peers then exchange
Finished messages in order to authenticate to each other.

Our attack exploits the fact that the server always de-
crypts an RSA-PKCS#1 v1.5 ciphertext, computes the
server_write_key, and immediately responds with a
ServerVerify message. The SSLv2 standard implies
this message ordering, but does not make it explicit. How-
ever, we observed this behavior in every implementation
we examined. Our attack also takes advantage of the fact
that the encrypted mksecret portion of the master_key can
vary in length, and is only five bytes for export ciphers.

The TLS handshake protocol. In TLS [13] or SSLv3,
the client initiates the handshake with a ClientHello,
which contains a client random rc and a list of supported
cipher suites. The server chooses one of the cipher
suites and responds with three messages, ServerHello,
Certificate, and ServerHelloDone. These messages
include the server’s choice of cipher suite, server nonce rs,
and a server certificate with an RSA public key. The client
then uses the public key to encrypt a newly generated 48-
byte premaster secret pms and sends it to the server in
a ClientKeyExchange message. The client and server
then derive encryption and MAC keys from the premaster
secret and the client and server random nonces. The de-
tails of this derivation are not important to our attack. The

3

client then sends ChangeCipherSpec and Finished
messages. The Finished message authenticates all pre-
vious handshake messages using the derived keys. The
server responds with its own ChangeCipherSpec and
Finished messages.

The two main details relevant to our attacks are:
• The premaster secret is always 48 bytes long, inde-

pendent of the chosen cipher suite. This is also true
for export cipher suites.

• After receiving the ClientKeyExchange message,
the server waits for the ClientFinished message,
in order to authenticate the client.

2.3 Bleichenbacher’s attack
Bleichenbacher’s attack is a padding oracle attack—it
exploits the fact that RSA ciphertexts should decrypt to
PKCS#1 v1.5-compliant plaintexts. If an implementation
receives an RSA ciphertext that decrypts to an invalid
PKCS#1 v1.5 plaintext, it might naturally leak this infor-
mation via an error message, by closing the connection,
or by taking longer to process the error condition. This
behavior can leak information about the plaintext that can
be modeled as a cryptographic oracle for the decryption
process. Bleichenbacher [8] demonstrated how such an
oracle could be exploited to decrypt RSA ciphertexts.

Algorithm. In the simplest attack scenario, the attacker
has a valid PKCS#1 v1.5 ciphertext c0 that they wish to
decrypt to discover the message m0. They have no access
to the private RSA key, but instead have access to an
oracle O that will decrypt a ciphertext c and inform the
attacker whether the most significant two bytes match the
required value for a correct PKCS#1 v1.5 padding:

O(c) =

{
1 if m = cd mod N starts with 0x00 02
0 otherwise.

If the oracle answers with 1, the attacker knows that
2B≤ m≤ 3B−1, where B = 28(`m−2). The attacker can
take advantage of RSA malleability to generate new can-
didate ciphertexts for any s:

c = (c0 · se) mod N = (m0 · s)e mod N

The attacker queries the oracle with c. If the oracle re-
sponds with 0, the attacker increments s and repeats the
previous step. Otherwise, the attacker learns that for
some r, 2B≤ m0s− rN < 3B. This allows the attacker to
reduce the range of possible solutions to:

2B+ rN
s

≤ m0 <
3B+ rN

s
The attacker proceeds by refining guesses for s and r
values and successively decreasing the size of the interval
containing m0. At some point the interval will contain a
single valid value, m0. Bleichenbacher’s original paper
describes this process in further detail [8].

Countermeasures. In order to protect against this attack,
the decrypter must not leak information about the PKCS#1
v1.5 validity of the ciphertext. The ciphertext does not
decrypt to a valid message, so the decrypter generates a
fake plaintext and continues the protocol with this decoy.
The attacker should not be able to distinguish the resulting
computation from a correctly decrypted ciphertext.

In the case of SSL/TLS, the server generates a ran-
dom premaster secret to continue the handshake if the
decrypted ciphertext is invalid. The client will not pos-
sess the session key to send a valid ClientFinished
message and the connection will terminate.

3 Breaking TLS with SSLv2
In this section, we describe our cross-protocol DROWN
attack that uses an SSLv2 server as an oracle to efficiently
decrypt TLS connections. The attacker learns the session
key for targeted TLS connections but does not learn the
server’s private RSA key. We first describe our techniques
using a generic SSLv2 oracle. In Section 4.1, we show
how a protocol flaw in SSLv2 can be used to construct
such an oracle, and describe our general DROWN attack.
In Section 5, we show how an implementation flaw in
common versions of OpenSSL leads to a more powerful
oracle and describe our efficient special DROWN attack.

We consider a server accepting TLS connections from
clients. The connections are established using a secure,
state-of-the-art TLS version (1.0–1.2) and a TLS_RSA ci-
pher suite with a private key unknown to the attacker.

The same RSA public key as the TLS connections is
also used for SSLv2. For simplicity, our presentation will
refer to the servers accepting TLS and SSLv2 connections
as the same entity.

Our attacker is able to passively eavesdrop on traffic
between the client and server and record RSA-based TLS
traffic. The attacker may or may not be also required
to perform active man-in-the-middle interference, as ex-
plained below.

The attacker can expect to decrypt one out of 1,000
intercepted TLS connections in our attack for typical pa-
rameters. This is a devastating threat in many scenarios.
For example, a decrypted TLS connection might reveal
a client’s HTTP cookie or plaintext password, and an at-
tacker would only need to successfully decrypt a single
ciphertext to compromise the client’s account. In order
to collect 1,000 TLS connections, the attacker might sim-
ply wait patiently until sufficiently many connections are
recorded. A less patient attacker might use man-in-the-
middle interference, as in the BEAST attack [14].

3.1 A generic SSLv2 oracle
Our attacks make use of an oracle that can be queried on
a ciphertext and leaks information about the decrypted
plaintext; this abstractly models the information gained

4

from an SSLv2 server’s behavior. Our SSLv2 oracles re-
veal many bytes of plaintext, enabling an efficient attack.

Our cryptographic oracle O has the following function-
ality: O decrypts an RSA ciphertext c and responds with
ciphertext validity based on the decrypted message m.
The ciphertext is valid only if m starts with 0x00 02 fol-
lowed by non-null padding bytes, a delimiter byte 0x00,
and a master_key mksecret of correct byte length `k. We
call such a ciphertext SSLv2 conformant.

All of the SSLv2 padding oracles we instantiate give
the attacker similar information about a PKCS#1 v1.5
conformant SSLv2 ciphertext:

O(c)=

{
mksecret if cd mod N = 00||02||PS||00||mksecret

0 otherwise.

That is, the oracle O(c) will return the decrypted message
mksecret if it is queried on a PKCS#1 v1.5 conformant
SSLv2 ciphertext c corresponding to a correctly PKCS#1
v1.5 padded encryption of mksecret . The attacker then
learns `k +3 bytes of m = cd mod N: the first two bytes
are 00||02, and the last `k +1 bytes are 00||mksecret . The
length `k of mksecret varies based on the cipher suite used
to instantiate the oracle. For export-grade cipher suites
such as SSL_RSA_EXPORT_WITH_RC2_CBC_40_MD5, k
will be 5 bytes, so the attacker learns 8 bytes of m.

3.2 DROWN attack template
Our attacker will use an SSLv2 oracle O to decrypt a
TLS ClientKeyExchange. The behavior of O poses two
problems for the attacker. First, a TLS key exchange ci-
phertext decrypts to a 48-byte premaster secret. But since
no SSLv2 cipher suites have 48-byte key strengths, this
means that a valid TLS ciphertext is invalid to our oracle
O . In order to apply Bleichenbacher’s attack, the attacker
must transform the TLS ciphertext into a valid SSLv2 key
exchange message. Second, O is very restrictive, since
it strictly checks the length of the unpadded message.
According to Bardou et al. [4], Bleichenbacher’s attack
would require 12 million queries to such an oracle.1

Our attacker overcomes these problems by following
this generic attack flow:

0. The attacker collects many encrypted TLS RSA key
exchange messages.

1. The attacker converts one of the intercepted TLS
ciphertexts containing a 48-byte premaster secret to
an RSA PKCS#1 v1.5 encoded ciphertext valid to
the SSLv2 oracle O .

2. Once the attacker has obtained a valid SSLv2 RSA
ciphertext, they can continue with a modified version
of Bleichenbacher’s attack, and decrypt the message
after many more oracle queries.

1See Table 1 in [4]. The oracle is denoted with the term FFF.

3. The attacker then transforms the decrypted plaintext
back into the original plaintext, which is one of the
collected TLS handshakes.

We describe the algorithmic improvements we use to
make each of these steps efficient below.

3.2.1 Finding an SSLv2 conformant ciphertext
The first step for the attacker is to transform the original
TLS ClientKeyExchange message c0 from a TLS con-
formant ciphertext into an SSLv2 conformant ciphertext.

For this task, we rely on the concept of trimmers, which
were introduced by Bardou et al. [4]. Assume that the mes-
sage m0 = c0

d mod N is divisible by a small number t. In
that case, m0 · t−1 mod N simply equals the natural num-
ber m0/t. If we choose u ≈ t, and multiply the original
message by u · t−1, the resulting number will lie near the
original message: m0 ≈ m0/t ·u.

This method gives a good chance of generating a new
SSLv2 conformant message. Let c0 be an intercepted
TLS conformant RSA ciphertext, and let m0 = cd

0 mod N
be the plaintext. We select a multiplier s = u/t mod N =
ut−1 mod N where u and t are coprime, compute the value
c1 = c0se mod N, and query O(c1). We will receive a
response if m1 = m0 ·u/t is SSLv2 conformant.

As an example, let us assume a 2048-bit RSA cipher-
text with `k = 5, and consider the fraction u = 7, t = 8.
The probability that c0 ·u/t will be SSLv2 conformant is
1/7,774, so we expect to make 7,774 oracle queries be-
fore obtaining a positive response from O . Appendix A.1
gives more details on computing these probabilities.

3.2.2 Shifting known plaintext bytes
Once we have obtained an SSLv2 conformant ciphertext
c1, the oracle has also revealed the `k +1 least significant
bytes (mksecret together with the delimiter byte 0x00) and
two most significant 0x00 02 bytes of the SSLv2 confor-
mant message m1. We would like to rotate these known
bytes around to the right, so that we have a large block
of contiguous known most significant bytes of plaintext.
In this section, we show that this can be accomplished
by multiplying by some shift 2−r mod N. In other words,
given an SSLv2 conformant ciphertext c1 = me

1 mod N,
we can efficiently generate an SSLv2 conformant cipher-
text c2 = me

2 mod N where m2 = s ·m1 · 2−r mod N and
we know several most significant bytes of m2.

Let R = 28(k+1) and B = 28(`m−2). Abusing notation
slightly, let the integer m1 = 2 ·B+PS ·R+mksecret be
the plaintext satisfying me

1 = c1 mod N. At this stage, the
`k-byte integer mksecret is known and the `m− `k−3-byte
integer PS is not.

Let m̃1 = 2 ·B+mksecret be the known components of
m1, so m1 = m̃1 +PS ·R. We can use this to compute a
new plaintext for which we know many most significant

5

bytes. Consider the value:

m1 ·R−1 mod N = m̃1 ·R−1 +PS mod N.

The value of PS is unknown and consists of `m− `k−3
bytes. This means that the known value m̃1 ·R−1 shares
most of its `k +3 most significant bytes with m1 ·R−1.

Furthermore, we can iterate this process by finding a
new multiplier s such that m2 = s ·m1 ·R−1 mod N is also
SSLv2 conformant. A randomly chosen s < 230 will work
with probability 2−25.4. We can take use the bytes we have
already learned about m1 to efficiently compute such an s
with only 678 oracle queries in expectation for a 2048-bit
RSA modulus. Appendix A.3 gives more details.

3.2.3 Adapted Bleichenbacher iteration
It is feasible for all of our oracles to use the previous
technique to entirely recover a plaintext message. How-
ever, for our SSLv2 protocol oracle it is cheaper after a
few iterations to continue using Bleichenbacher’s original
attack. We can apply the original algorithm proposed by
Bleichenbacher as described in Section 2.3.

Each step obtains a message that starts with the required
0x00 02 bytes after two queries in expectation. Since we
know the value of the `k +1 least significant bytes after
multiplying by any integer, we can query the oracle only
on multipliers that cause the (`k + 1)st least significant
byte to be zero. However, we cannot ensure that the
padding string is entirely nonzero; for a 2048-bit modulus
this will hold with probability 0.37.

For a 2048-bit modulus, the total expected number of
queries when using this technique to fully decrypt the
plaintext is 2048∗2/0.37≈ 11,000.

4 General DROWN
In this section, we describe how to use any correct SSLv2
implementation accepting export-grade cipher suites as a
padding oracle. We then show how to adapt the techniques
described in Section 3.2 to decrypt TLS RSA ciphertexts.

4.1 The SSLv2 export padding oracle
SSLv2 is vulnerable to a direct message side channel
vulnerability exposing a Bleichenbacher oracle to the
attacker. The vulnerability follows from three prop-
erties of SSLv2. First, the server immediately re-
sponds with a ServerVerify message after receiving the
ClientMasterKey message, which includes the RSA ci-
phertext, without waiting for the ClientFinished mes-
sage that proves the client knows the RSA plaintext. Sec-
ond, when choosing 40-bit export RC2 or RC4 as the sym-
metric cipher, only 5 bytes of the master_key (mksecret)
are sent encrypted using RSA, and the remaining 11 bytes
are sent in cleartext. Third, a server implementation that
correctly implements the anti-Bleichenbacher counter-
measure and receives an RSA key exchange message with
invalid padding will generate a random premaster secret

TLS
Client
TLS

Client

Attack
Algorithm

Attack
Algorithm

TLS
Server
TLS

Server

ClientHello

ServerHelloCertificateServerHelloDone

ClientHello

ServerHello

ClientMasterKey

ClientHello
Finished

CertificateFinished

ServerHelloDone

Record TLS 1.2 handshake

Chosen-ciphertext attack

...

SSLv2
Server
SSLv2
Server

Bleichenbacher Oracle

Break 40-bit
encryption

Break 40-bit
encryption

c
RSA

c'
RSA

c
RC2

k
RC2 m?

ServerVerify

ClientKeyExchange

Figure 2: SSLv2-based Bleichenbacher attack on TLS.
An attacker passively collects RSA ciphertexts from a
TLS 1.2 handshake, and then performs oracle queries
against a server that supports SSLv2 with the same public
key to decrypt the TLS ciphertext.

and carry out the rest of the TLS handshake using this
randomly generated key material.

This allows an attacker to deduce the validity of RSA
ciphertexts in the following manner:

1. The attacker sends a ClientMasterKey message,
which contains an RSA ciphertext c0 and any
choice of 11 clear key bytes for mkclear. The
server responds with a ServerVerify message,
which contains the challenge encrypted using the
server_write_key.

2. The attacker performs an exhaustive search over
the possible values of the 5 bytes of the
master_key mksecret , computes the correspond-
ing server_write_key, and checks whether the
ServerVerify message decrypts to challenge.
One value should pass this check; call it mk0. Re-
call that if the RSA plaintext was valid, mk0 is the
unpadded data in the RSA plaintext cd

0 . Otherwise,
mk0 is a randomly generated sequence of 5 bytes.

3. The attacker re-connects to the server with the
same RSA ciphertext c0. The server responds
with another ServerVerify message that contains
the current challenge encrypted using the current
server_write_key. If the decrypted RSA cipher-

6

text was valid, the attacker can use mk0 to decrypt a
correct challenge value from the ServerVerify
message. Otherwise, if the ServerVerify message
does not decrypt to challenge, the RSA ciphertext
was invalid, and mk0 must have been random.

Thus we can instantiate an oracle OSSLv2-export using
the procedure above; each oracle query requires two
server connections and 240 decryption attempts in the
simplest case. For each oracle call OSSLv2-export(c), the
attacker learns whether c is valid, and if so, learns the
two most significant bytes 0x00 02, the sixth least sig-
nificant 0x00 delimiter byte, and the value of the 5 least
significant bytes of the plaintext m.

4.2 TLS decryption attack
In this section, we describe how the oracle described in
Section 4.1 can be used to carry out a feasible attack to
decrypt passively collected TLS ciphertexts.

As described in Section 3, we consider a server that
accepts TLS connections from clients using an RSA pub-
lic key that is exposed via SSLv2, and an attacker who is
able to passively observe these connections.

We also assume the server supports export cipher suites
for SSLv2. This can happen for two reasons. First, the
same server operators that fail to follow best practices in
disabling SSLv2 [40] may also fail to follow best prac-
tices by supporting export cipher suites. Alternatively,
the server might be running a version of OpenSSL prior
to January 2016, in which case it is vulnerable to the
OpenSSL cipher suite selection bug described in Sec-
tion 7, and an attacker may negotiate a cipher suite of his
choice independent of the server configuration.

The attacker needs access to computing power suffi-
cient to perform a 250 time attack, mostly brute forcing
symmetric key encryption. After our optimizations, this
can be done with a one-time investment of a few thousand
dollars of GPUs, or in a few hours for a few hundred
dollars in the cloud. Our cost estimates are described
in Section 4.3.

4.2.1 Constructing the attack
The attacker can exploit the SSLv2 vulnerability follow-
ing the generic attack outline described in Section 3.2,
consisting of several distinct phases:

0. The attacker passively collects 1,000 TLS hand-
shakes from connections using RSA key exchange.

1. They then attempt to convert the intercepted TLS
ciphertexts containing a 48-byte premaster secret
to valid RSA PKCS#1 v1.5 encoded ciphertexts
containing five-byte messages using the fractional
trimmers described in Section 3.2.1, and querying
OSSLv2-export. The attacker sends the modified ci-
phertexts to the server using fresh SSLv2 connec-
tions with weak symmetric ciphers and uses the

ServerVerify messages to deduce ciphertext va-
lidity as described in the previous section. For each
queried RSA ciphertext, the attacker must perform
a brute force attack on the weak symmetric cipher.
The attacker expects to obtain a valid SSLv2 cipher-
text after roughly 10,000 oracle queries, or 20,000
connections to the server.

2. Once the attacker has obtained a valid SSLv2 RSA
ciphertext c1 = me

1, they use the shifting technique
explained in Section 3.2.2 to find an integer s1 such
that m2 = m1 · 2−40 · s1 is also SSLv2 conformant.
Appendix A.4 contains more details on this step.

3. The attacker then applies the shifting technique again
to find another integer s2 such that m3 =m2 ·2−40 ·s2
is also SSLv2 conformant.

4. They then search for yet another integer s3 such that
m3 · s3 is also SSLv2 conformant.

5. Finally, the attacker can continue with our adapted
Bleichenbacher iteration technique described in Sec-
tion 3.2.3, and decrypts the message after an ex-
pected 10,000 additional oracle queries, or 20,000
connections to the server.

6. The attacker can then transform the decrypted plain-
text back into the original plaintext, which is one of
the 1,000 intercepted TLS handshakes.

The rationale behind the different phases. Bleichen-
bacher’s original algorithm requires a conformant mes-
sage m0, and a multiplier s1 such that m1 = m0 · s1 is also
conformant. Naïvely, it would appear we can apply the
same algorithm here, after completing Phase 1. However,
the original algorithm expects s1 to be of size about 224.
This is not the case when we use fractions for s1, as the
integer s1 = ut−1 mod N will be the same size as N.

Therefore, our approach is to find a conformant mes-
sage for which we know the 5 most significant bytes; this
will happen after multiple rotations and this message will
be m3. After finding such a message, finding s3 such that
m4 = m3 · s3 is also conformant becomes trivial. From
there, we can finally apply the adapted Bleichenbacher
iteration technique as described in Appendix A.5.

4.2.2 Attack performance
The attacker wishes to minimize three major costs in the
attack: the number of recorded ciphertexts from the victim
client, the number of connections to the victim server, and
the number of symmetric keys to be brute forced. The
requirements for each of these elements are governed
by the set of fractions to be multiplied with each RSA
ciphertext in the first phase, as described in Section 3.2.1.

Table 1 highlights a few choices for F and the resulting
performance metrics for 2048-bit RSA keys. Appendix A
provides more details on the derivation of these numbers

7

Optimizing Cipher- |F | SSLv2 Offline
for texts connections work

offline work 12,743 1 50,421 249.64

offline work 1,055 10 46,042 250.63

compromise 4,036 2 41,081 249.98

online work 2,321 3 38,866 251.99

online work 906 8 39,437 252.25

Table 1: 2048-bit Bleichenbacher attack complexity.
The cost to decrypt one ciphertext can be adjusted by
choosing the set of fractions F the attacker applies to
each of the passively collected ciphertexts in the first
step of the attack. This choice affects several parameters:
the number of these collected ciphertexts, the number of
connections the attacker makes to the SSLv2 server, and
the number of offline decryption operations.

Key size Phase 1 Phases 2–5 Total Offline
queries work

1024 4,129 4,132 8,261 250.01

2048 6,919 12,468 19,387 250.76

4096 18,286 62,185 80,471 252.16

Table 2: Oracle queries required by our attack. In
Phase 1, the attacker queries the oracle until an SSLv2
conformant ciphertext is found. In Phases 2–5, the at-
tacker decrypts this ciphertext using leaked plaintext.
These numbers minimize total queries. In our attack,
an oracle query represents two server connections.

and other optimization choices. Table 2 gives the expected
number of Bleichenbacher queries for different RSA key
sizes, when minimizing total oracle queries.

4.3 Implementing general DROWN with GPUs
The most computationally expensive part of our general
DROWN attack is breaking the 40-bit symmetric key, so
we developed a highly optimized GPU implementation of
this brute force attack. Our first naïve GPU implementa-
tion performed around 26MH/s, where MH denotes the
time required for testing one million possible values of
mksecret . Our optimized implementation runs at a final
speed of 515MH/s, a speedup factor of 19.8.

We obtained our improvements through a number of
optimizations. For example, our original implementation
ran into a communication bottleneck in the PCI-E bus
in transmitting candidate keys from CPU to GPU, so we
removed this bottleneck by generating key candidates
on the GPU itself. We optimized memory management,
including storing candidate keys and the RC2 permutation
table in constant memory, which is almost as fast as a
register, instead of slow global memory.

We experimentally evaluated our optimized implemen-
tation on a local cluster and in the cloud. We used it to
execute a full attack of 249.6 tested keys on each platform.
The required number of keys to test during the attack is
a random variable, distributed geometrically, with an ex-
pectation that ranges between 249.6 and 252.5 depending
on the choice of optimization parameters. We treat a full
attack as requiring 249.6 tested keys overall.

Hashcat. Hashcat [20] is an open source optimized
password-recovery tool. The Hashcat developers allowed
us to use their GPU servers for our attack evaluation. The
servers contain a total of 40 GPUs: 32 Nvidia GTX 980
cards, and 8 AMD R9 290X cards. The value of this
equipment is roughly $18,040. Our full attack took less
than 18 hours to complete on the Hashcat servers, with
the longest single instance taking 17h9m.

Amazon EC2. We also ran our optimized GPU code
on the Amazon Elastic Compute Cloud (EC2) service.
We used a cluster composed of 200 variable-price “spot”
instances: 150 g2.2xlarge instances, each containing
one high-performance NVIDIA GPU with 1,536 CUDA
cores and 50 g2.8xlarge instances, each containing four
of these GPUs. When we ran our experiments in January
2016, the average spot rates we paid were $0.09/hr and
$0.83/hr respectively. Our full attack finished in under 8
hours including startup and shutdown for a cost of $440.

4.4 OpenSSL SSLv2 cipher suite selection bug
General DROWN is a protocol flaw, but the population
of vulnerable hosts is increased due to a bug in OpenSSL
that causes many servers to erroneously support SSLv2
and export ciphers even when configured not to. The
OpenSSL team intended to disable SSLv2 by default in
2010, with a change that removed all SSLv2 cipher suites
from the default list of ciphers offered by the server [36].
However, the code for the protocol itself was not re-
moved in standard builds and SSLv2 itself remained en-
abled. We discovered a bug in OpenSSL’s SSLv2 ci-
pher suite negotiation logic that allows clients to select
SSLv2 cipher suites even when they are not explicitly
offered by the server. We notified the OpenSSL team of
this vulnerability, which was assigned CVE-2015-3197.
The problem was fixed in OpenSSL releases 1.0.2f and
1.0.1r [36].

5 Special DROWN
We discovered multiple vulnerabilities in recent (but not
current) versions of the OpenSSL SSLv2 handshake code
that create even more powerful Bleichenbacher oracles,
and drastically reduce the amount of computation required
to implement our attacks. The vulnerabilities, designated
CVE-2016-0703 and CVE-2016-0704, were present in
the OpenSSL codebase from at least the start of the reposi-
tory, in 1998, until they were unknowingly fixed on March

8

4, 2015 by a patch [28] designed to correct an unrelated
problem [11]. By adapting DROWN to exploit this spe-
cial case, we can significantly cut both the number of
connections and the computational work required.

5.1 The OpenSSL “extra clear” oracle
Prior to the fix, OpenSSL servers improperly al-
lowed the ClientMasterKey message to contain
clear_key_data bytes for non-export ciphers. When
such bytes are present, the server substitutes them for
bytes from the encrypted key. For example, consider the
case that the client chooses a 128-bit cipher and sends
a 16-byte encrypted key k[1],k[2], . . . ,k[16] but, contrary
to the protocol specification, includes 4 null bytes of
clear_key_data. Vulnerable OpenSSL versions will
construct the following master_key:

[00 00 00 00 k[1] k[2] k[3] k[4] . . . k[9] k[10] k[11] k[12]]

This enables a straightforward key recovery attack
against such versions. An attacker that has intercepted
an SSLv2 connection takes the RSA ciphertext of the
encrypted key and replays it in non-export handshakes to
the server with varying lengths of clear_key_data. For
a 16-byte encrypted key, the attacker starts with 15 bytes
of clear key, causing the server to use the master_key:

[00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 k[1]]

The attacker can brute force the first byte of the en-
crypted key by finding the matching ServerVerify mes-
sage among 256 possibilities. Knowing k[1], the attacker
makes another connection with the same RSA ciphertext
but 14 bytes of clear key, resulting in the master_key:

[00 00 00 00 00 00 00 00 00 00 00 00 00 00 k[1] k[2]]

The attacker can now easily brute force k[2]. With
only 15 probe connections and an expected 15 · 128 =
1,920 trial encryptions, the attacker learns the entire
master_key for the recorded session.

As this oracle is obtained by improperly sending unex-
pected clear-key bytes, we call it the Extra Clear oracle.

This session key-recovery attack can be directly con-
verted to a Bleichenbacher oracle. Given a candidate
ciphertext and symmetric key length `k, the attacker sends
the ciphertext with `k known bytes of clear_key_data.
The oracle decision is simple:

• If the ciphertext is valid, the ServerVerify mes-
sage will reflect a master_key consisting of those
`k known bytes.

• If the ciphertext is invalid, the master_key will be
replaced with `k random bytes (by following the
countermeasure against the Bleichenbacher attack),
resulting in a different ServerVerify message.

This oracle decision requires one connection to the
server and one ServerVerify computation. After the
attacker has found a valid ciphertext corresponding to a

`k-byte encrypted key, they recover the `k plaintext bytes
by repeating the key recovery attack from above. Thus
our oracle OSSLv2-extra-clear(c) requires one connection to
determine whether c is valid. After `k connections, the
attacker additionally learns the `k least significant bytes of
m. We model this as a single oracle call, but the number of
server connections will vary depending on the response.

5.2 MITM attack against TLS
Special DROWN is fast enough that it can decrypt a TLS
premaster secret online, during a connection handshake.
A man-in-the-middle attacker can use it to compromise
connections between modern browsers and TLS servers—
even those configured to prefer non-RSA cipher suites.

The MITM attacker impersonates the server and sends
a ServerHello message that selects a cipher suite with
RSA as the key-exchange method. Then, the attacker uses
special DROWN to decrypt the premaster secret. The
main difficulty is completing the decryption and produc-
ing a valid ServerFinished message before the client’s
connection times out. Most browsers will allow the hand-
shake to last up to one minute [1].

The attack requires targeting an average of 100 connec-
tions, only one of which will be attacked, probabilistically.
The simplest way for the attacker to facilitate this is to use
JavaScript to cause the client to connect repeatedly to the
victim server, as described in Section 3. Each connection
is tested against the oracle with only small number of
fractions, and the attacker can discern immediately when
he receives a positive response from the oracle.

Note that since the decryption must be completed on-
line, the Leaky Export oracle cannot be used, and the
attack uses only the Extra Clear oracle.

5.2.1 Constructing the attack
We will use SSL_DES_192_EDE3_CBC_WITH_MD5 as the
cipher suite, allowing the attacker to recover 24 bytes of
key at a time. The attack works as follows:

0. The attacker causes the victim client to connect re-
peatedly to the victim server, with at least 100 con-
nections.

1. The attacker uses the fractional trimmers as de-
scribed in Section 3.2.1 to convert one of the TLS
ciphertexts into an SSLv2 conformant ciphertext c0.

2. Once the attacker has obtained a valid SSLv2 cipher-
text c1, they repeatedly use the shifting technique
described in Section 3.2.2 to rotate the message by
25 bytes each iteration, learning 27 bytes with each
shift. After several iterations, they have learned the
entire plaintext.

3. The attacker then transforms the decrypted SSLv2
plaintext into the decrypted TLS plaintext.

9

Using 100 fractional trimmers, this more efficient ora-
cle attack allows the attacker to recover one in 100 TLS
session keys using only about 27,000 connections to the
server, as described in Appendix A.6. The computation
cost is so low that we can complete the full attack on a
single workstation in under one minute.

5.3 The OpenSSL “leaky export” oracle
In addition to the extra clear implementation bug, the
same set of OpenSSL versions also contain a separate bug,
where they do not follow the correct algorithm for their
implementation of the Bleichenbacher countermeasure.
We now describe this faulty implementation:

• The SSLv2 ClientKeyExchange message contains
the mkclear bytes immediately before the ciphertext c.
Let p be the buffer starting at the first mkclear byte.

• Decrypt c in place. If the decryption operation suc-
ceeds, and c decrypted to a plaintext of a correct
padded length, p now contains the 11 mkclear bytes
followed by the 5 mksecret bytes.

• If c decrypted to an unpadded plaintext k of incorrect
length, the decryption operation overwrites the first
j = min(|k|,5) bytes of c with the first j bytes of k.

• If c is not SSLv2 conformant and the decryption
operation failed, randomize the first five bytes of p,
which are the first five bytes of mkclear.

This behavior allows the attacker to distinguish be-
tween these three cases. Suppose the attacker sends 11
null bytes as mkclear. Then these are the possible cases:

1. c decrypts to a correctly padded plaintext k of
the expected length, 5 bytes. Then the following
master_key will be constructed:
[00 00 00 00 00 00 00 00 00 00 00 k[1] k[2] k[3] k[4] k[5]]

2. c decrypts to a correctly padded plaintext k of a
wrong length. Let r be the five random bytes the
server generated. The yielded master_key will be:

[r[1] r[2] r[3] r[4] r[5] 00 00 00 00 00 00 k[1] k[2] k[3] k[4] k[5]]

when |k| ≥ 5. If |k| < 5, the server substitutes the
first |k| bytes of c with the first |k| bytes of k. Using
|k|= 3 as an example, the master_key will be:

[r[1] r[2] r[3] r[4] r[5] 00 00 00 00 00 00 k[1] k[2] k[3] c[4] c[5]]

3. c is not SSLv2 conformant, and hence the decryption
operation failed. The resulting master_key will be:

[r[1] r[2] r[3] r[4] r[5] 00 00 00 00 00 00 c[1] c[2] c[3] c[4] c[5]]

The attacker detects case (3) by performing an exhaus-
tive search over the 240 possibilities for r, and checking
whether any of the resulting values for the master_key
correctly decrypts the observed ServerVerify message.
If no r value satisfies this property, then cd starts with
bytes 0x00 02. The attacker then distinguishes between

cases (1) and (2) by performing an exhaustive search
over the five bytes of k, and checking whether any of the
resulting values for mk correctly decrypts the observed
ServerVerify message.

As this oracle leaks information when using export
ciphers, we have named it the Leaky Export oracle.

In conclusion, OSSLv2-export-leaky allows an attacker to
obtain a valid oracle response for all ciphertexts which de-
crypt to a correctly-padded plaintext of any length. This
is in contrary to the previous oracles OSSLv2-extra-clear and
OSSLv2-export, which required the plaintext to be of a spe-
cific length. Each oracle query to OSSLv2-export-leaky re-
quires one connection to the server and 241 offline work.

Combining the two oracles. The attacker can use the
Extra Clear and Leaky Export oracles together in order to
reduce the number of queries required for the TLS decryp-
tion attack. They first test a TLS conformant ciphertext for
divisors using the Leaky Export oracle, then use fractions
dividing the plaintext with both oracles. Once the attacker
has obtained a valid SSLv2 ciphertext c1, they repeatedly
use the shifting technique described in Section 3.2.2 to
rotate the message by 25 bytes each iteration while choos-
ing 3DES as the symmetric cipher, learning 27 bytes with
each shift. After several iterations, they have learned the
entire plaintext, using 6,300 queries (again for a 2048-bit
modulus). This brings the overall number of queries for
this variant of the attack to 900+16∗4+6,300 = 7,264.
These parameter choices are not necessarily optimal. We
give more details in Appendix A.7.

6 Extending the attack to QUIC
DROWN can also be extended to a feasible-time man-in-
the-middle attack against QUIC [26]. QUIC [10, 39] is a
recent cryptographic protocol designed and implemented
by Google that is intended to reduce the setup time to
establish a secure connection while providing security
guarantees analogous to TLS. QUIC’s security relies on
a static “server config” message signed by the server’s
public key. Jager et al. [26] observe that an attacker who
can forge a signature on a malicious QUIC server config
once would be able to impersonate the server indefinitely.
In this section, we show an attacker with significant re-
sources would be able to mount such an attack against a
server whose RSA public keys is exposed via SSLv2.

A QUIC client receives a “server config” message,
signed by the server’s public key, which enumerates con-
nection parameters: a static elliptic curve Diffie-Hellman
public value, and a validity period. In order to mount a
man-in-the-middle attack against any client, the attacker
wishes to generate a valid server config message contain-
ing their own Diffie-Hellman value, and an expiration
date far in the future.

The attacker needs to present a forged QUIC config to
the client in order to carry out a successful attack. This is

10

Pro- Attack Oracle SSLv2 Offline See
tocol type connec- work §

tions

TLS Decrypt SSLv2 41,081 250 4.2
TLS Decrypt Special 7,264 251 5.3
TLS MITM Special 27,000 215 5.2

QUIC MITM SSLv2 225 265 6.1
QUIC MITM Special 225 225 6.2
QUIC MITM Special 217 258 6.2

Table 3: Summary of attacks. “Oracle” denotes the ora-
cle required to mount each attack, which also implies the
vulnerable set of SSLv2 implementations. SSLv2 denotes
any SSLv2 implementation, while “Special” denotes an
OpenSSL version vulnerable to special DROWN.

straightforward, since QUIC discovery may happen over
non-encrypted HTTP [19]. The server does not even need
to support QUIC at all: an attacker could impersonate
the attacked server over an unencrypted HTTP connec-
tion and falsely indicate that the server supports QUIC.
The next time the client connects to the server, it will
attempt to connect using QUIC, allowing the attacker to
present the forged “server config” message and execute
the attack [26].

6.1 QUIC signature forgery attack based on
general DROWN

The attack proceeds much as in Section 3.2, except that
some of the optimizations are no longer applicable, mak-
ing the attack more expensive.

The first step is to discover a valid, PKCS conformant
SSLv2 ciphertext. In the case of TLS decryption, the
input ciphertext was PKCS conformant to begin with; this
is not the case for the QUIC message c0. Thus for the first
phase, the attacker iterates through possible multiplier
values s until they randomly encounter a valid SSLv2
message in c0 · sd . For 2048-bit RSA keys, the probability
of this random event is Prnd ≈ 2−25; see Section 3.2.

Once the first SSLv2 conformant message is found, the
attacker proceeds with the signature forgery as they would
in Step 2 of the TLS decryption attack. The required
number of oracle queries for this step is roughly 12,468
for 2048-bit RSA keys.

Attack cost. The overall oracle query cost is dominated
by the 225 ≈ 34 million expected queries in the first phase,
above. At a rate of 388 queries/second, the attacker would
finish in one day; at a rate of 12 queries/second they would
finish in one month.

For the SSLv2 export padding oracle, the offline com-
putation to break a 40-bit symmetric key for each query
requires iterating over 265 keys. At our optimized GPU
implementation rate of 515 million keys per second, this

would require 829,142 GPU days. Our experimental GPU
hardware retails for $400. An investment of $10 million
to purchase 25,000 GPUs would reduce the wall clock
time for the attack to 33 days.

Our implementation run on Amazon EC2 processed
about 174 billion keys per g2.2xlarge instance-hour,
so at a cost of $0.09/instance-hour the full attack would
cost $9.5 million and could be parallelized to Amazon’s
capacity.

6.2 Optimized QUIC signature forgery based
on special DROWN

For targeted servers that are vulnerable to special
DROWN, we are unaware of a way to combine the two
special DROWN oracles; the attacker would have to
choose a single oracle which minimizes his subjective
cost. For the Extra Clear oracle, there is only negligi-
ble computation per oracle query, so the computational
cost for the first phase is 225. For the Leaky Export or-
acle, as explained below, the required offline work is
258, and the required number of server connections is
roughly 145,573. Both oracles appear to bring this at-
tack well within the means of a moderately provisioned
adversary.

Mounting the attack using Leaky Export. For a 2048-
bit RSA modulus, the probability of a random mes-
sage being conformant when querying OSSLv2-export-leaky
is Prnd ≈ (1/256)2 ∗ (255/256)8 ∗ (1− (255/256)246)≈
2−17. Therefore, to compute cd when c is not SSLv2 con-
formant, the attacker randomly generates values for s and
tests c · se against the Leaky Export oracle. After roughly
217 ≈ 131,000 queries, they obtain a positive response,
and learn that cd · s starts with bytes 0x00 02.

Naïvely, it would seem the attacker can then ap-
ply one of the techniques presented in this work, but
OSSLv2-export-leaky does not provide knowledge of any
least significant plaintext bytes when the plaintext length
is not at most the correct one. Instead, the attacker pro-
ceeds directly according to the algorithm presented in [4].
Referring to Table 1 in [4], OSSLv2-export-leaky is denoted
with the term FFT, as it returns a positive response for a
correctly padded plaintext of any length, and the median
number of required queries for this oracle is 14,501. This
number of queries is dominated by the 131,000 queries
the attacker has already executed. As each query requires
testing roughly 241 keys, the required offline work is ap-
proximately 258.

Future changes to QUIC. In addition to disabling
QUIC support for non-whitelisted servers, Google have
informed us that they plan to change the QUIC standard,
so that the “server config” message will include a client
nonce to prove freshness. They also plan to limit QUIC
discovery to HTTPS.

11

Any certificate Trusted certificates

Protocol Port SSL/TLS SSLv2
support

Vulnerable
key SSL/TLS SSLv2

support
Vulnerable

key

SMTP 25 3,357 K 936 K (28%) 1,666 K (50%) 1,083 K 190 K (18%) 686 K (63%)
POP3 110 4,193 K 404 K (10%) 1,764 K (42%) 1,787 K 230 K (13%) 1,031 K (58%)
IMAP 143 4,202 K 473 K (11%) 1,759 K (42%) 1,781 K 223 K (13%) 1,022 K (57%)
HTTPS 443 34,727 K 5,975 K (17%) 11,444 K (33%) 17,490 K 1,749 K (10%) 3,931 K (22%)
SMTPS 465 3,596 K 291 K (8%) 1,439 K (40%) 1,641 K 40 K (2%) 949 K (58%)
SMTP 587 3,507 K 423 K (12%) 1,464 K (42%) 1,657 K 133 K (8%) 986 K (59%)
IMAPS 993 4,315 K 853 K (20%) 1,835 K (43%) 1,909 K 260 K (14%) 1,119 K (59%)
POP3S 995 4,322 K 884 K (20%) 1,919 K (44%) 1,974 K 304 K (15%) 1,191 K (60%)

(Alexa Top 1M) 443 611 K 82 K (13%) 152 K (25%) 456 K 38 K (8%) 109 K (24%)

Table 4: Hosts vulnerable to general DROWN. We performed Internet-wide scans to measure the number of hosts
supporting SSLv2 on several different protocols. A host is vulnerable to DROWN if its public key is exposed anywhere
via SSLv2. Overall vulnerability to DROWN is much larger than support for SSLv2 due to widespread reuse of keys.

7 Measurements
We performed Internet-wide scans to analyze the number
of systems vulnerable to DROWN. A host is directly
vulnerable to general DROWN if it supports SSLv2. Sim-
ilarly, a host is directly vulnerable to special DROWN if
it supports SSLv2 and has the extra clear bug (which also
implies the leaky export bug). These directly vulnerable
hosts can be used as oracles to attack any other host with
the same key. Hosts that do not support SSLv2 are still
vulnerable to general or special DROWN if their RSA key
pair is exposed by any general or special DROWN oracle,
respectively. The oracles may be on an entirely different
host or port. Additionally, any host serving a browser-
trusted certificate is vulnerable to a special DROWN man-
in-the-middle if any name on the certificate appears on
any other certificate containing a key that is exposed by a
special DROWN oracle.

We used ZMap [16] to perform full IPv4 scans on
eight different ports during late January and February
2016. We examined port 443 (HTTPS), and common
email ports 25 (SMTP with STARTTLS), 110 (POP3
with STARTTLS), 143 (IMAP with STARTTLS), 465
(SMTPS), 587 (SMTP with STARTTLS), 993 (IMAPS),
and 995 (POP3S). For each open port, we attempted three
complete handshakes: one normal handshake with the
highest available SSL/TLS version; one SSLv2 handshake
requesting an export RC2 cipher suite; and one SSLv2
handshake with a non-export cipher and sixteen bytes of
plaintext key material sent during key exchange, which
we used to detect if a host has the extra clear bug.

We summarize our general DROWN results in Table 4.
The fraction of SSL/TLS hosts that directly supported
SSLv2 varied substantially across ports. 28% of SMTP
servers on port 25 supported SSLv2, likely due to the
opportunistic encryption model for email transit. Since
SMTP fails-open to plaintext, many servers are config-

ured with support for the largest possible set of protocol
versions and cipher suites, under the assumption that even
bad or obsolete encryption is better than plaintext [9]. The
other email ports ranged from 8% for SMTPS to 20% for
POP3S and IMAPS. We found 17% of all HTTPS servers,
and 10% of those with a browser-trusted certificate, are
directly vulnerable to general DROWN.

OpenSSL SSLv2 cipher suite selection bug. We dis-
covered that OpenSSL servers do not respect the cipher
suites advertised in the SSLv2 ServerHello message.
That is, a malicious client can select an arbitrary cipher
suite in the ClientMasterKey message, regardless of
the contents of the ServerHello, and force the use of
export cipher suites even if they are explicitly disabled in
the server configuration. To fully detect SSLv2 oracles,
we configured our scanner to ignore the ServerHello
cipher list. The cipher selection bug helps explain the
wide support for SSLv2—the protocol appeared disabled,
but non-standard clients could still complete handshakes.

Widespread public key reuse. Reuse of RSA key ma-
terial across hosts and certificates is widespread [21, 23].
Often this is benign: organizations may issue multiple
TLS certificates for distinct domains with the same public
key in order to simplify use of TLS acceleration hardware
and load balancing. However, there is also evidence that
system administrators may not entirely understand the
role of the public key in certificates. For example, in the
wake of the Heartbleed vulnerability, a substantial frac-
tion of compromised certificates were reissued with the
same public key [15]. The number of hosts vulnerable to
DROWN rises significantly when we take RSA key reuse
into account. For HTTPS, 17% of hosts are vulnerable
to general DROWN because they support both TLS and
SSLv2 on the HTTPS port, but 33% are vulnerable when
considering RSA keys used by another service.

12

Any certificate Trusted certificates

Protocol Port SSL/TLS Special DROWN
oracles

Vulnerable
key SSL/TLS Vulnerable

key
Vulnerable

name

SMTP 25 3,357 K 855 K (25%) 896 K (27%) 1,083 K 305 K (28%) 398 K (37%)
POP3 110 4,193 K 397 K (9%) 946 K (23%) 1,787 K 485 K (27%) 674 K (38%)
IMAP 143 4,202 K 457 K (11%) 969 K (23%) 1,781 K 498 K (30%) 690 K (39%)
HTTPS 443 34,727 K 4,029 K (12%) 9,089 K (26%) 17,490 K 2,523 K (14%) 3,793 K (22%)
SMTPS 465 3,596 K 334 K (9%) 765 K (21%) 1,641 K 430 K (26%) 630 K (38%)
SMTP 587 3,507 K 345 K (10%) 792 K (23%) 1,657 K 482 K (29%) 667 K (40%)
IMAPS 993 4,315 K 892 K (21%) 1,073 K (25%) 1,909 K 602 K (32%) 792 K (42%)
POP3S 995 4,322 K 897 K (21%) 1,108 K (26%) 1,974 K 641 K (32%) 835 K (42%)

(Alexa Top 1M) 443 611 K 22 K (4%) 52 K (9%) 456 K 33 K (7%) 85 K (19%)

Table 5: Hosts vulnerable to special DROWN. A server is vulnerable to special DROWN if its key is exposed by a
host with the CVE-2016-0703 bug. Since the attack is fast enough to enable man-in-the-middle attacks, a server is also
vulnerable (to impersonation) if any name in its certificate is found in any trusted certificate with an exposed key.

Special DROWN. As shown in Table 5, 9.1 M HTTPS
servers (26%) are vulnerable to special DROWN, as
are 2.5 M HTTPS servers with browser-trusted certifi-
cates (14%). 66% as many HTTPS hosts are vulnera-
ble to special DROWN as to general DROWN (70% for
browser-trusted servers). While 2.7 M public keys are
vulnerable to general DROWN, only 1.1 M are vulnerable
to special DROWN (41% as many). Vulnerability among
Alexa Top Million domains is also lower, with only 9%
of domains vulnerable (7% for browser-trusted domains).

Since special DROWN enables active man-in-the-
middle attacks, any host serving a browser-trusted certifi-
cate with at least one name that appears on any certificate
with an RSA key exposed by a special DROWN oracle
is vulnerable to an impersonation attack. Extending our
search to account for certificates with shared names, we
find that 3.8 M (22%) hosts with browser-trusted certifi-
cates are vulnerable to man-in-the-middle attacks, as well
as 19% of the browser-trusted domains in the Alexa Top
Million.

8 Related work
TLS has had a long history of implementation flaws and
protocol attacks [2,3,7,14,15,35,38]. We discuss relevant
Bleichenbacher and cross-protocol attacks below.

Bleichenbacher’s attack. Bleichenbacher’s adaptive
chosen ciphertext attack against SSL was first published
in 1998 [8]. Several works have adapted his attack to
different scenarios [4, 25, 29]. The TLS standard explic-
itly introduces countermeasures against the attack [13],
but several modern implementations have been discov-
ered to be vulnerable to timing-attack variants in recent
years [34, 42]. These side-channel attacks are implemen-
tation failures and only apply when the attacker is co-
located with the victim.

Cross-protocol attacks. Jager et al. [26] showed that a
cross-protocol Bleichenbacher RSA padding oracle attack
is possible against the proposed TLS 1.3 standard, in spite
of the fact that TLS 1.3 does not include RSA key ex-
change, if server implementations use the same certificate
for previous versions of TLS and TLS 1.3. Wagner and
Schneier [41] developed a cross-cipher suite attack for
SSLv3, in which an attacker could reuse a signed server
key exchange message in a later exchange with a different
cipher suite. Mavrogiannopoulos et al. [32] developed a
cross-cipher suite attack allowing an attacker to use ellip-
tic curve Diffie-Hellman as prime field Diffie-Hellman.

Attacks on export-grade cryptography. Recently, the
FREAK [5] and Logjam [1] attacks allowed an active
attacker to downgrade a connection to export-grade RSA
and Diffie-Hellman, respectively. DROWN exploits
export-grade symmetric ciphers, completing the export-
grade cryptography attack trifecta.

9 Discussion
9.1 Implications for modern protocols
Although the protocol flaws in SSLv2 enabling DROWN
are not present in recent TLS versions, many modern pro-
tocols meet a subset of the requirements to be vulnerable
to a DROWN-style attack. For example:

1. RSA key exchange. TLS 1.2 [13] allows this.

2. Reuse of server-side nonce by the client. QUIC [10]
allows this.

3. Server sends a message encrypted with the derived
key before the client. QUIC, TLS 1.3 [37], and TLS
False Start [30] do this.

4. Deterministic cipher parameters are generated from
the premaster secret and nonces. This is the case for
all TLS stream ciphers and TLS 1.0 block ciphers.

13

DROWN has a natural adaptation when all three prop-
erties are present. The attacker exposes a Bleichenbacher
oracle by connecting to the server twice with the identi-
cal RSA ciphertexts and server-side nonces. If the RSA
ciphertext is PKCS conformant, the server will respond
with identical messages across both connections; other-
wise they will differ.

9.2 Lessons for key reuse
DROWN illustrates the cryptographic principle that keys
should be single use. Often, this principle is primarily
applied to keys that are used to both sign and decrypt, but
DROWN illustrates that using keys for different protocol
versions can also be a serious security risk. Unfortunately,
there is no widely supported way to pin X.509 certificates
to specific protocols. While using per-protocol certificates
may help defend against passive attacks, an active attacker
could still leverage any certificate with a matching name.

9.3 Harms from obsolete cryptography
Recent years have seen a significant number of serious
attacks exploiting outdated and obsolete cryptography.
Many protocols and cryptographic primitives that were
demonstrated to be weak decades ago are surprisingly
common in real-world systems.

DROWN exploits a modification of an 18-year-old at-
tack against a combination of protocols and ciphers that
have long been superseded by better options: the SSLv2
protocol, export cipher suites, and PKCS #1 v1.5 RSA
padding. In fact, support for RSA as a key exchange
method, including the use of PKCS #1 v1.5, is mandatory
even for TLS 1.2. The attack is made more severe by
implementation flaws in rarely used code.

Our work serves as yet another reminder of the im-
portance of removing deprecated technologies before
they become exploitable vulnerabilities. In response to
many of the vulnerabilities listed above, browser ven-
dors have been aggressively warning end users when TLS
connections are negotiated with unsafe cryptographic pa-
rameters, including SHA-1 certificates, small RSA and
Diffie-Hellman parameters, and SSLv3 connections. This
process is currently happening in a piecemeal fashion,
primitive by primitive. Vendors and developers rightly
prioritize usability and backward compatibility in stan-
dards, and are willing to sacrifice these only for practical
attacks. This approach works less well for cryptographic
vulnerabilities, where the first sign of a weakness, while
far from being practically exploitable, can signal trouble
in the future. Communication issues between academic
researchers and vendors and developers have been voiced
by many in the community, including Green [18] and
Jager et al. [24].

The long-term solution is to proactively remove these
obsolete technologies. There is movement towards this

already: TLS 1.3 has entirely removed RSA key exchange
and has restricted Diffie-Hellman key exchange to a few
groups large enough to withstand cryptanalytic attacks
long in the future. The CA/Browser forum will remove
support for SHA-1 certificates this year. Resources such
as the SSL Labs SSL Reports have gathered information
about best practices and vulnerabilities in one place, in or-
der to encourage administrators to make the best choices.

9.4 Harms from weakening cryptography
Export-grade cipher suites for TLS deliberately weak-
ened three primitives to the point that they are now bro-
ken even to enthusiastic amateurs: 512-bit RSA key ex-
change, 512-bit Diffie-Hellman key exchange, and 40-bit
symmetric encryption. All three deliberately weakened
primitives have been cornerstones of high-profile attacks:
FREAK exploits export RSA, Logjam exploits export
Diffie-Hellman, and now DROWN exploits export sym-
metric encryption.

Like FREAK and Logjam, our results illustrate the
continued harm that a legacy of deliberately weakened
export-grade cryptography inflicts on the security of mod-
ern systems, even decades after the regulations influenc-
ing the original design were lifted. The attacks described
in this paper are fully feasible against export cipher suites
today. The technical debt induced by cryptographic “front
doors” has left implementations vulnerable for decades.
With the slow rate at which obsolete protocols and primi-
tives fade away, we can expect some fraction of hosts to
remain vulnerable for years to come.

Acknowledgements
The authors thank team Hashcat for making their GPUs
available for the execution of the attack, Ralph Holz
for providing early scan data, Adam Langley for in-
sights about QUIC, Graham Steel for insights about TLS
False Start, the OpenSSL team for their help with dis-
closure, Ivan Ristic for comments on session resumption
in a BEAST-styled attack, and Tibor Jager and Christian
Mainka for further helpful comments. We thank the ex-
ceptional sysadmins at the University of Michigan for
their help and support throughout this project, including
Chris Brenner, Kevin Cheek, Laura Fink, Dan Maletta,
Jeff Richardson, Donald Welch, Don Winsor, and others
from ITS, CAEN, and DCO.

This material is based upon work supported by the
U.S. National Science Foundation under Grants No. CNS-
1345254, CNS-1408734, CNS-1409505, CNS-1505799,
CNS-1513671, and CNS-1518888, an AWS Research Ed-
ucation grant, a scholarship from the Israeli Ministry of
Science, Technology and Space, a grant from the Blavat-
nik Interdisciplinary Cyber Research Center (ICRC) at
Tel Aviv University, a gift from Cisco, and an Alfred P.
Sloan Foundation research fellowship.

14

References
[1] ADRIAN, D., BHARGAVAN, K., DURUMERIC, Z., GAUDRY, P.,

GREEN, M., HALDERMAN, J. A., HENINGER, N., SPRINGALL,
D., THOMÉ, E., VALENTA, L., VANDERSLOOT, B., WUSTROW,
E., ZANELLA-BÉGUELIN, S., AND ZIMMERMANN, P.
Imperfect forward secrecy: How Diffie-Hellman fails in practice.
In 22nd ACM Conference on Computer and Communications
Security (Oct. 2015).

[2] AL FARDAN, N. J., AND PATERSON, K. G. Lucky Thirteen:
Breaking the TLS and DTLS record protocols. In IEEE
Symposium on Security and Privacy (2013), IEEE, pp. 526–540.

[3] ALFARDAN, N. J., BERNSTEIN, D. J., PATERSON, K. G.,
POETTERING, B., AND SCHULDT, J. C. On the security of RC4
in TLS. In 22nd USENIX Security Symposium (2013),
pp. 305–320.

[4] BARDOU, R., FOCARDI, R., KAWAMOTO, Y., SIMIONATO, L.,
STEEL, G., AND TSAY, J.-K. Efficient padding oracle attacks on
cryptographic hardware. In Advances in Cryptology–CRYPTO
2012. Springer, 2012, pp. 608–625.

[5] BEURDOUCHE, B., BHARGAVAN, K., DELIGNAT-LAVAUD, A.,
FOURNET, C., KOHLWEISS, M., PIRONTI, A., STRUB, P.-Y.,
AND ZINZINDOHOUE, J. K. A messy state of the union: Taming
the composite state machines of TLS. In IEEE Symposium on
Security and Privacy (2015).

[6] BHARGAVAN, K., LAVAUD, A. D., FOURNET, C., PIRONTI, A.,
AND STRUB, P. Y. Triple handshakes and cookie cutters:
Breaking and fixing authentication over TLS. In IEEE
Symposium on Security and Privacy (2014), IEEE, pp. 98–113.

[7] BHARGAVAN, K., AND LEURENT, G. Transcript collision
attacks: Breaking authentication in TLS, IKE, and SSH. In
Network and Distributed System Security Symposium (Feb. 2016).

[8] BLEICHENBACHER, D. Chosen ciphertext attacks against
protocols based on the RSA encryption standard PKCS #1. In
Advances in Cryptology — CRYPTO ’98, vol. 1462 of Lecture
Notes in Computer Science. Springer Berlin / Heidelberg, 1998.

[9] BREYHA, W., DURVAUX, D., DUSSA, T., KAPLAN, L. A.,
MENDEL, F., MOCK, C., KOSCHUCH, M., KRIEGISCH, A.,
PÖSCHL, U., SABET, R., SAN, B., SCHLATTERBECK, R.,
SCHRECK, T., WÜRSTLEIN, A., ZAUNER, A., AND ZAWODSKY,
P. Better crypto – applied crypto hardening, 2016. Available at
https://bettercrypto.org/static/applied-crypto-hardening.pdf.

[10] CHANG, W.-T., AND LANGLEY, A. QUIC crypto, 2014.
https://docs.google.com/document/d/1g5nIXAIkN_Y-
7XJW5K45IblHd_L2f5LTaDUDwvZ5L6g/edit?pli=1.

[11] CVE-2015-0293. https://cve.mitre.org/cgi-bin/
cvename.cgi?name=CVE-2015-0293.

[12] DE RUITER, J., AND POLL, E. Protocol state fuzzing of TLS
implementations. In 24th USENIX Security Symposium
(Washington, D.C., Aug. 2015), USENIX Association.

[13] DIERKS, T., AND RESCORLA, E. The Transport Layer Security
(TLS) Protocol Version 1.2. RFC 5246 (Proposed Standard), Aug.
2008. Updated by RFCs 5746, 5878.

[14] DUONG, T., AND RIZZO, J. Here come the xor ninjas, 2011.
http://netifera.com/research/beast/beast_DRAFT_0621.pdf.

[15] DURUMERIC, Z., KASTEN, J., ADRIAN, D., HALDERMAN,
J. A., BAILEY, M., LI, F., WEAVER, N., AMANN, J.,
BEEKMAN, J., PAYER, M., AND PAXSON, V. The matter of
Heartbleed. In 14th Internet Measurement Conference (New York,
NY, USA, 2014), IMC ’14, ACM, pp. 475–488.

[16] DURUMERIC, Z., WUSTROW, E., AND HALDERMAN, J. A.
ZMap: Fast Internet-wide scanning and its security applications.
In 22nd USENIX Security Symposium (Aug. 2013).

[17] FREIER, A., KARLTON, P., AND KOCHER, P. The secure
sockets layer (SSL) protocol version 3.0. RFC 6101, 2011.

[18] GREEN, M. Secure protocols in a hostile world. In CHES 2015
(Aug. 2015). https://isi.jhu.edu/~mgreen/CHESPDF.pdf.

[19] HAMILTON, R. QUIC discovery.
https://docs.google.com/document/d/
1i4m7DbrWGgXafHxwl8SwIusY2ELUe8WX258xt2LFxPM/
edit#.

[20] Hashcat. http://hashcat.net.

[21] HENINGER, N., DURUMERIC, Z., WUSTROW, E., AND
HALDERMAN, J. A. Mining your Ps and Qs: Detection of
widespread weak keys in network devices. In 21st USENIX
Security Symposium (Aug. 2012).

[22] HICKMAN, K., AND ELGAMAL, T. The SSL protocol, 1995.
https://tools.ietf.org/html/draft-hickman-netscape-ssl-00.

[23] HOLZ, R., AMANN, J., MEHANI, O., WACHS, M., AND
KAAFAR, M. A. TLS in the wild: An Internet-wide analysis of
TLS-based protocols for electronic communication. In Network
and Distributed System Security Symposium (Geneva,
Switzerland, Feb. 2016), S. Capkun, Ed., Internet Society.

[24] JAGER, T., PATERSON, K. G., AND SOMOROVSKY, J. One bad
apple: Backwards compatibility attacks on state-of-the-art
cryptography. In Network and Distributed System Security
Symposium (2013).

[25] JAGER, T., SCHINZEL, S., AND SOMOROVSKY, J.
Bleichenbacher’s attack strikes again: Breaking PKCS#1 v1.5 in
XML encryption. In 17th European Symposium on Research in
Computer Security (Berlin, Heidelberg, 2012), Springer Berlin
Heidelberg, pp. 752–769.

[26] JAGER, T., SCHWENK, J., AND SOMOROVSKY, J. On the
security of TLS 1.3 and QUIC against weaknesses in PKCS#1
v1.5 encryption. In 22nd ACM Conference on Computer and
Communications Security (New York, NY, USA, 2015), CCS ’15,
ACM, pp. 1185–1196.

[27] KALISKI, B. PKCS #1: RSA Encryption Version 1.5. RFC 2313
(Informational), Mar. 1998. Obsoleted by RFC 2437.

[28] KÄSPER, E. Fix reachable assert in SSLv2 servers. OpenSSL
patch, Mar. 2015. https://github.com/openssl/openssl/commit/
86f8fb0e344d62454f8daf3e15236b2b59210756.

[29] KLIMA, V., POKORNỲ, O., AND ROSA, T. Attacking
RSA-based sessions in SSL/TLS. In Cryptographic Hardware
and Embedded Systems-CHES 2003. Springer, 2003,
pp. 426–440.

[30] LANGLEY, A., MODADUGU, N., AND MOELLER, B. Transport
layer security (TLS) false start. draft-bmoeller-tls-falsestart-00,
June 2 (2010).

[31] LENSTRA, A. K., LENSTRA, H. W., AND LOVÁSZ, L.
Factoring polynomials with rational coefficients. Mathematische
Annalen 261 (1982), 515–534. 10.1007/BF01457454.

[32] MAVROGIANNOPOULOS, N., VERCAUTEREN, F., VELICHKOV,
V., AND PRENEEL, B. A cross-protocol attack on the TLS
protocol. In 19th ACM Conference on Computer and
Communications Security (New York, NY, USA, 2012), CCS ’12,
ACM, pp. 62–72.

[33] MEYER, C., AND SCHWENK, J. SoK: Lessons learned from
SSL/TLS attacks. In 14th International Workshop on Information
Security Applications (Berlin, Heidelberg, Aug. 2013), WISA
2013, Springer-Verlag.

[34] MEYER, C., SOMOROVSKY, J., WEISS, E., SCHWENK, J.,
SCHINZEL, S., AND TEWS, E. Revisiting SSL/TLS
implementations: New Bleichenbacher side channels and attacks.
In 23rd USENIX Security Symposium. USENIX Association, San
Diego, CA, Aug. 2014, pp. 733–748.

15

https://bettercrypto.org/static/applied-crypto-hardening.pdf
https://docs.google.com/document/d/1g5nIXAIkN_Y-7XJW5K45IblHd_L2f5LTaDUDwvZ5L6g/edit?pli=1
https://docs.google.com/document/d/1g5nIXAIkN_Y-7XJW5K45IblHd_L2f5LTaDUDwvZ5L6g/edit?pli=1
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-0293
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-0293
http://netifera.com/research/beast/beast_DRAFT_0621.pdf
https://isi.jhu.edu/~mgreen/CHESPDF.pdf
https://docs.google.com/document/d/1i4m7DbrWGgXafHxwl8SwIusY2ELUe8WX258xt2LFxPM/edit#
https://docs.google.com/document/d/1i4m7DbrWGgXafHxwl8SwIusY2ELUe8WX258xt2LFxPM/edit#
https://docs.google.com/document/d/1i4m7DbrWGgXafHxwl8SwIusY2ELUe8WX258xt2LFxPM/edit#
http://hashcat.net
https://tools.ietf.org/html/draft-hickman-netscape-ssl-00
https://github.com/openssl/openssl/commit/86f8fb0e344d62454f8daf3e15236b2b59210756
https://github.com/openssl/openssl/commit/86f8fb0e344d62454f8daf3e15236b2b59210756

[35] MÖLLER, B., DUONG, T., AND KOTOWICZ, K. This POODLE
bites: exploiting the SSL 3.0 fallback, 2014.

[36] OPENSSL. Change log.
https://www.openssl.org/news/changelog.html#x0.

[37] RESCORLA, E., ET AL. The transport layer security (TLS)
protocol version 1.3, draft.

[38] RIZZO, J., AND DUONG, T. The CRIME attack. EKOparty
Security Conference, 2012.

[39] ROSKIND, J. QUIC design document, 2013.
https://docs.google.com/a/chromium.org/document/d/
1RNHkx_VvKWyWg6Lr8SZ-saqsQx7rFV-ev2jRFUoVD34.

[40] TURNER, S., AND POLK, T. Prohibiting secure sockets layer
(SSL) version 2.0. RFC 6176 (Informational), Apr. 2011.

[41] WAGNER, D., AND SCHNEIER, B. Analysis of the SSL 3.0
protocol. In 2nd USENIX Workshop on Electronic Commerce
(1996).

[42] ZHANG, Y., JUELS, A., REITER, M. K., AND RISTENPART, T.
Cross-tenant side-channel attacks in PaaS clouds. In 21st ACM
Conference on Computer and Communications Security (New
York, NY, USA, 2014), CCS ’14, ACM, pp. 990–1003.

A Adaptations to Bleichenbacher’s attack
A.1 Success probability of fractions
For a given fraction u/t, the success probability with a
randomly chosen TLS conformant ciphertext can be com-
puted as follows. Let m0 be a random TLS conformant
message, m1 = m0 ·u/t, and let `k be the expected length
of the unpadded message. For s = u/t mod N where u
and t are coprime, m1 will be SSLv2 conformant if the
following conditions all hold:

1. m0 is divisible by t. For a randomly generated m0,
this condition holds with probability 1/t.

2. m1[1] = 0 and m1[2] = 2, or the integer m · u/t ∈
[2B,3B). For a randomly generated m0 divisible by
t, this condition holds with probability

P =


3−2 · t/u for 2/3 < u/t < 1
3 · t/u−2 for 1 < u/t < 3/2
0 otherwise

3. ∀i∈ [3, `m−(`k+1)],m1[i] 6= 0, or all bytes between
the first two bytes and the (k+ 1) least significant
bytes are non-zero. This condition holds with proba-
bility (1−1/256)`m−(`k+3).

4. m1[`m− `k] = 0: the (`k +1)st least significant byte
is 0. This condition holds with probability 1/256.

Using the above formulas for u/t = 7/8, the overall
probability of success is P = 1/8 · 0.71 · 0.37 · 1/256 =
1/7,774; thus the attacker expects to find an SSLv2 con-
formant ciphertext after testing 7,774 randomly chosen
TLS conformant ciphertexts. The attacker can decrease
the number of TLS conformant ciphertexts needed by mul-
tiplying each candidate ciphertext by several fractions.

Note that testing random s values until c1 = c0 · se mod
N is SSLv2 conformant yields a success probability of
Prnd ≈ (1/256)3 ∗ (255/256)249 ≈ 2−25.

A.2 Optimizing the chosen set of fractions
In order to deduce the validity of a single ciphertext, the
attacker would have to perform a non-trivial brute-force
search over all 5 byte master_key values. This translates
into 240 encryption operations.

The search space can be reduced by an additional opti-
mization, relying on the fractional multipliers used in the
first step. If the attacker uses u/t = 8/7 to compute a new
SSLv2 conformant candidate, and m0 is indeed divisible
by t = 7, then the new candidate message m1 = m0/t ·u
is divisible by u = 8, and the last three bits of m1 (and
thus mksecret) are zero. This allows reducing the searched
master_key space by selecting specific fractions.

More generally, for an integer u, the largest power of 2
by which u is divisible is denoted by v2(u), and multiply-
ing by a fraction u/t reduces the search space by a factor
of v2(u). With this observation, the trade-off between the
3 metrics: the required number of intercepted ciphertexts,
the required number of queries, and the required number
of encryption attempts, becomes non-trivial to analyze.

Therefore, we have resorted to using simulations when
evaluating the performance metrics for sets of fractions.
The probability that multiplying a ciphertext by any frac-
tion out of a given set of fractions results in an SSLv2
conformant message is difficult to compute, since the
events are in fact inter-dependent: If m · 16/15 is con-
forming, then m is divisible by 5, greatly increasing the
probability that m ·4/5 is also conforming. However, it is
easy to perform a Monte Carlo simulation, where we ran-
domly generate ciphertexts, and measure the probability
that any fraction out of a given set produces a conforming
message. The expected required number of intercepted
ciphertexts is the inverse of that probability.

Formally, if we denote the set of fractions as F , and
the event that a message m is conforming as C(m), we
perform a Monte Carlo estimation of the probability PF =
P(∃ f ∈F :C(m · f)), and the expected number of required
intercepted ciphertexts equals 1/PF . The required number
of oracle queries is simply 1/PF · |F |. Accordingly, the re-
quired number of server connections is 2 ·1/PF · |F |, since
each oracle query requires two server connections. And
as for the required number of encryption attempts, if we
denote this number when querying with a given fraction
f = u/t as E f , then E f = Eu/t = 240−v2(u). We further
define the required encryption attempts when testing a
ciphertext with a given set of fraction F as EF = ∑ f∈F E f .
Then the required number of encryption attempts in Phase
1 for a given set of fractions is (1/PF) ·EF .

We can now give precise figures for the expected num-
ber of required intercepted ciphertexts, connections to the
targeted server, and encryption attempts. The results pre-
sented in Table 1 were obtained using the above approach
with one billion random ciphertexts per fraction set F .

16

https://www.openssl.org/news/changelog.html#x0
https://docs.google.com/a/chromium.org/document/d/1RNHkx_VvKWyWg6Lr8SZ-saqsQx7rFV-ev2jRFUoVD34
https://docs.google.com/a/chromium.org/document/d/1RNHkx_VvKWyWg6Lr8SZ-saqsQx7rFV-ev2jRFUoVD34

A.3 Rotation and multiplier speedups
For a randomly chosen s, the probability that the two
most significant bytes are 0x00 02 is 2−16; for a 2028-bit
modulus N the probability that the next `m− `k−3 bytes
of m2 are all nonzero is about 0.37 as in the previous
section, and the probability that the `k +1 least significant
delimiter byte is 0x00 is 1/256. Thus a randomly chosen s
will work with probability 2−25.4 and the attacker expects
to try 225.4 values for s before succeeding.

However, since the attacker has already learned `k +3
most significant bytes of m1 ·R−1 mod N, for `k ≥ 4 and
s < 230 they do not need to query the oracle to learn if the
two most significant bytes are SSLv2 conformant; they
can compute this themselves from their knowledge of
m̃1 ·R−1. They iterate through values of s, test that the top
two bytes of m̃1 ·R−1 mod N are 0x00 02, and only query
the oracle for s values that satisfy this test. Therefore, for a
2048-bit modulus they expect to test 216 values offline per
oracle query. The probability that a query is conformant is
then P=(1/256)∗(255/256)249≈ 1/678, so they expect
to perform 678 oracle queries before finding a fully SSLv2
conformant ciphertext c2 = (s ·R−1)ec1 mod N.

We can speed up the brute force testing of 216 values
of s using algebraic lattices. We are searching for values
of s satisfying m̃1R−1s < 3B mod N, or given an offset
s0 we would like to find solutions x and z to the equation
m̃1R−1(s0+x) = 2B+z mod N where |x|< 216 and |z|<
B. Let X = 215. We can construct the lattice basis

L =

−B Xm̃1R−1 m̃1R−1s0 +B
0 XN 0
0 0 N


We then run the LLL algorithm [31] on L to obtain a
reduced lattice basis V containing vectors v1,v2,v3. We
then construct the linear equations f1(x,z) = v1,1/B · z+
v1,2/X · x + v1,3 = 0 and f2(x,z) = v2,1/B · z + v2,2/X ·
x+ v2,3 = 0 and solve the system of equations to find a
candidate integer solution x = s̃. We then test s = s̃+ s0
as our candidate solution in this range.

detL = XZN2 and dimL = 3, thus we expect the
vectors vi in V to have length approximately |vi| ≈
(XZN2)1/3. We will succeed if |vi|< N, or in other words
XZ < N. N ≈ 28`m , so we expect to find short enough
vectors. This approach works well in practice and is sig-
nificantly faster than iterating through 216 possible values
of s̃ for each query.

In summary, given an SSLv2 conformant ciphertext
c1 = me

1 mod N, we can efficiently generate an SSLv2
conformant ciphertext c2 = me

2 mod N where m2 = s ·
m1 ·R−1 mod N and we know several most significant
bytes of m2, using only a few hundred oracle queries in
expectation. We can iterate this process as many times as
we like to continue generating SSLv2 conformant cipher-
texts ci for which we know increasing numbers of most

significant bytes, and which have a known multiplicative
relationship to our original message c0.

A.4 Rotations in the general DROWN attack
After the first phase, we have learned an SSLv2 confor-
mant ciphertext c1, and we wish to shift known plaintext
bytes from least to most significant bits. Since we learn
the least significant 6 bytes of plaintext of m1 from a suc-
cessful oracle OSSLv2-export query, we could use a shift of
2−48 to transfer 48 bits of known plaintext to the most
significant bits of a new ciphertext. However, we perform
a slight optimization here, to reduce the number of en-
cryption attempts. We instead use a shift of 2−40, so that
the least significant byte of m1 · 2−40 and m̃1 · 2−40 will
be known. This means that we can compute the least sig-
nificant byte of m1 ·2−40 · s mod N, so oracle queries now
only require 232 encryption attempts each. This brings
the total expected number of encryption attempts for each
shift to 232 ∗678≈ 241.

We perform two such plaintext shifts in order to obtain
an SSLv2 conformant message, m3 that resides in a nar-
row interval of length at most 28`−66. We can then obtain
a multiplier s3 such that m3 · s3 is also SSLv2 conformant.
Since m3 lies in an interval of length at most 28`−66, with
high probability for any s3 < 230, m3 ·s3 lies in an interval
of length at most 28`m−36 < B, so we know the two most
significant bytes of m3 · s3. Furthermore, we know the
value of the 6 least significant bytes after multiplication.
We therefore test possible values of s3, and for values
such that m3 · s3 ∈ [2B,3B), and (m3 · s3)[`m−5] = 0, we
query the oracle with c3 · se

3 mod N. The only condition
for PKCS conformance which we haven’t verified be-
fore querying the oracle is the requirement of non-zero
padding, which holds with probability 0.37.

In summary, after roughly 1/0.37 = 2.72 queries we
expect a positive response from the oracle. Since we know
the value of the 6 least significant bytes after multiplica-
tion, this phase does not require performing an exhaustive
search. If the message is SSLv2 conformant after multipli-
cation, we know the symmetric key, and can test whether
it correctly decrypts the ServerVerify message.

A.5 Adapted Bleichenbacher iteration
After we have bootstrapped the attack using rotations, the
original algorithm proposed by Bleichenbacher can be
applied with minimal modifications.

The original step obtains a message that starts with
the required 0x00 02 bytes once in roughly every two
queries on average, and requires the number of queries to
be roughly 16`m. Since we know the value of the 6 least
significant bytes after multiplying by any integer, we can
only query the oracle for multipliers that result in a zero
6th least significant byte, and again an exhaustive search
over keys is not required. However, we cannot ensure

17

that the padding is non-zero when querying, which again
holds with probability 0.37. Therefore, for a 2048-bit
modulus, the overall expected number of queries for this
phase is roughly 2048∗2/0.37 = 11,070.

A.6 Special DROWN MITM performance
For the first step, the probability that the three padding
bytes are correct remains unchanged. The probability that
all the intermediate padding bytes are non-zero is now
slightly higher, P1 = (1−1/256)229 = 0.41, yielding an
overall maximal success probability P = 0.1 ·0.41 · 1

256 =
1/6,244 per oracle query. Since the attacker now only
needs to connect to the server once per oracle query, the
expected number of connections in this step is the same,
6,243. Phase 1 now yields a message with 3 known
padding bytes and 24 known plaintext bytes.

For the remaining rotation steps, each rotation requires
an expected 630 oracle queries. The attacker could now
complete the original Bleichenbacher attack by perform-
ing 11,000 sequential queries in the final phase. However,
with this more powerful oracle it is more efficient to apply
a rotation 10 more times to recover the remaining plain-
text bits. The number of queries required in this phase is
now 10 · 256/0.41 ≈ 6,300, and the queries for each of
the 10 steps can be executed in parallel.

Using multiple queries per fraction. For the
OSSLv2-extra-clear oracle, the attacker can increase
their chances of success by querying the server multiple
times per ciphertext and fraction, using different cipher
suites with different key lengths. They can negotiate
DES and hope the 9th least significant byte is zero, then
negotiate 128-bit RC4 and hope the 17th least significant
byte is zero, then negotiate 3DES and hope the 25th
least significant is zero. All three queries also require
the intermediate padding bytes to be non-zero. This
technique triples the success probability for a given
pair of (ciphertext, fraction), at a cost of triple the
queries. Its primary benefit is that fractions with smaller
denominators (and thus higher probabilities of success)
are now even more likely to succeed.

For a random ciphertext, when choosing 70 fractions,
the probability of the first zero delimiter byte being in
one of these three positions is 0.01. Hence, the attacker
can use only 100 recorded ciphertexts, and expect to use
100∗70∗3 = 21,000 oracle queries. For the Extra Clear
oracle, each query requires one SSLv2 connection to the
server. After obtaining the first positive response from the
oracle, the attacker proceeds to phase 2 using 3DES.

A.7 Special DROWN with combined oracles
Using the Leaky Export oracle, the probability that a
fraction u/t will result in a positive response is P=P0∗P3,
where the formula for computing P0 = P((m ·u/t)[1,2] =
00||02) is provided in Appendix A.1, and P3 is, for a

2048-bit modulus:

P3 = P(0x00 6∈ {m3, . . . ,m10}∧
0x00 ∈ {m11, . . . ,m`})

= (1−1/256)8 ∗ (1− (1−1/256)246) = 0.60

(1)

Phase 1. Our goal for this phase is to obtain a divisor t
as large as possible, such that t|m. We generate a list of
fractions, sorted in descending order of the probability
of resulting in a positive response from OSSLv2-export-leaky.
For a given ciphertext c, we then query with the 50 frac-
tions in the list with the highest probability, until we ob-
tain a first positive response for a fraction u0/t0. We can
now deduce that t0|m. We then generate a list of fractions
u/t where t is a multiple of t0, sort them again by success
probability, and again query with the 50 most probable
fractions, until a positive answer is obtained, or the list is
exhausted. If a positive answer is obtained, we iteratively
re-apply this process, until the list is exhausted, resulting
in a final fraction u∗/t∗.

Phase 2. We then query with all fractions denominated
by t∗, and hope the ciphertext decrypts to a plaintext of
one of seven possible lengths: {2,3,4,5,8,16,24}. As-
suming that this is the case, we learn at least three least
significant bytes, which allows us to use the shifting tech-
nique in order to continue the attack. Detecting plaintext
lengths 8, 16 and 24 can be accomplished using three Ex-
tra Clear oracle queries, employing DES, 128-bit RC4 and
3DES, respectively, as the chosen cipher suite. Detecting
plaintext lengths 2, 3, 4 and 5 can be accomplishing by
using a single Leaky Export oracle query, which requires
at most 241 offline computation. In fact, the optimization
over the key search space described in Section 3.2.1 is
applicable here and can slightly reduce the required com-
putation. Therefore, by initiating four SSLv2 connections
and performing at most 241 offline work, the attacker can
test for ciphertexts which decrypt to one of these seven
lengths.

In practice, choosing 50 fractions per iteration as de-
scribed above results in a success probability of 0.066 for
a single ciphertext. Hence, the expected number of re-
quired ciphertexts is merely 1/0.066 = 15. The expected
number of fractions per ciphertext for phase 1 is 60, as
in most cases phase 1 consists of just a few successful
iterations. Since each fraction requires a single query to
OSSLv2-export-leaky, the overall number of queries for this
stage is 15∗60 = 900, and the required offline computa-
tion is at most 900∗241 ≈ 251, which is similar to general
DROWN. For a 2048-bit RSA modulus, the expected
number of queries for phase 2 is 16. Each query con-
sists of three queries to OSSLv2-extra-clear and one query to
OSSLv2-export-leaky, which requires at most 241 computa-
tion. Therefore in expectancy the attacker has to perform
245 offline computation for phase 2.

18

	Introduction
	Background
	PKCS#1 v1.5 encryption padding
	SSL and TLS
	Bleichenbacher's attack

	Breaking TLS with SSLv2
	A generic SSLv2 oracle
	DROWN attack template
	Finding an SSLv2 conformant ciphertext
	Shifting known plaintext bytes
	Adapted Bleichenbacher iteration

	General DROWN
	The SSLv2 export padding oracle
	TLS decryption attack
	Constructing the attack
	Attack performance

	Implementing general DROWN with GPUs
	OpenSSL SSLv2 cipher suite selection bug

	Special DROWN
	The OpenSSL ``extra clear'' oracle
	MITM attack against TLS
	Constructing the attack

	The OpenSSL ``leaky export'' oracle

	Extending the attack to QUIC
	QUIC signature forgery attack based on general DROWN
	Optimized QUIC signature forgery based on special DROWN

	Measurements
	Related work
	Discussion
	Implications for modern protocols
	Lessons for key reuse
	Harms from obsolete cryptography
	Harms from weakening cryptography

	Adaptations to Bleichenbacher's attack
	Success probability of fractions
	Optimizing the chosen set of fractions
	Rotation and multiplier speedups
	Rotations in the general DROWN attack
	Adapted Bleichenbacher iteration
	Special DROWN MITM performance
	Special DROWN with combined oracles

